Bias-corrected and robust estimation of the bivariate stable tail dependence function

被引:0
|
作者
Mikael Escobar-Bach
Yuri Goegebeur
Armelle Guillou
Alexandre You
机构
[1] University of Southern Denmark,Department of Mathematics and Computer Science
[2] Avancée,Institut Recherche Mathématique
[3] UMR 7501,Société Générale Insurance – Sogessur
[4] Université de Strasbourg et CNRS,undefined
[5] Direction Technique,undefined
来源
TEST | 2017年 / 26卷
关键词
Multivariate extreme value statistics; Stable tail dependence function; Robustness; Bias-correction; 62G05; 62G20; 62G32;
D O I
暂无
中图分类号
学科分类号
摘要
The stable tail dependence function gives a full characterisation of the extremal dependence between two or more random variables. In this paper, we propose an estimator for this function which is robust against outliers in the sample. The estimator is derived from a bivariate second-order tail model together with a proper transformation of the bivariate observations, and its asymptotic properties are studied under some suitable regularity conditions. Our estimation procedure depends on two parameters: α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}, which controls the trade-off between efficiency and robustness of the estimator, and a second-order parameter τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document}, which can be replaced by a fixed value or by an estimate. In case where τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document} has been replaced by the true value or by an external consistent estimator, our robust estimator is asymptotically unbiased, whereas in case where τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document} is mis-specified, one loses this property, but still our estimator performs quite well with respect to bias. The finite sample performance of our robust and bias-corrected estimator of the stable tail dependence function is examined on a simulation study involving uncontaminated and contaminated samples. In particular, its behavior is illustrated for different values of the pair (α,τ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\alpha , \tau )$$\end{document} and is compared with alternative estimators from the extreme value literature.
引用
收藏
页码:284 / 307
页数:23
相关论文
共 50 条
  • [1] Bias-corrected and robust estimation of the bivariate stable tail dependence function
    Escobar-Bach, Mikael
    Goegebeur, Yuri
    Guillou, Armelle
    You, Alexandre
    TEST, 2017, 26 (02) : 284 - 307
  • [2] Bias-corrected estimation of stable tail dependence function
    Beirlant, Jan
    Escobar-Bach, Mikael
    Goegebeur, Yuri
    Guillou, Armelle
    JOURNAL OF MULTIVARIATE ANALYSIS, 2016, 143 : 453 - 466
  • [3] Robust and bias-corrected estimation of the coefficient of tail dependence
    Dutang, Christophe
    Goegebeur, Yuri
    Guillou, Armelle
    INSURANCE MATHEMATICS & ECONOMICS, 2014, 57 : 46 - 57
  • [4] Stable and bias-corrected estimation for nonparametric regression models
    Lin, Lu
    Li, Feng
    JOURNAL OF NONPARAMETRIC STATISTICS, 2008, 20 (04) : 283 - 303
  • [5] Robust estimation of the conditional stable tail dependence function
    Yuri Goegebeur
    Armelle Guillou
    Jing Qin
    Annals of the Institute of Statistical Mathematics, 2023, 75 : 201 - 231
  • [6] Robust estimation of the conditional stable tail dependence function
    Goegebeur, Yuri
    Guillou, Armelle
    Qin, Jing
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2023, 75 (02) : 201 - 231
  • [7] Robust and Bias-Corrected Estimation of the Probability of Extreme Failure Sets
    Dutang C.
    Goegebeur Y.
    Guillou A.
    Sankhya A, 2016, 78 (1): : 52 - 86
  • [8] Robust and Bias-Corrected Estimation of the Probability of Extreme Failure Sets
    Dutang, Christophe
    Goegebeur, Yuri
    Guillou, Armelle
    SANKHYA-SERIES A-MATHEMATICAL STATISTICS AND PROBABILITY, 2016, 78 (01): : 52 - 86
  • [9] nprobust: Nonparametric Kernel-Based Estimation and Robust Bias-Corrected Inference
    Calonico, Sebastian
    Cattaneo, Matias D.
    Farrell, Max H.
    JOURNAL OF STATISTICAL SOFTWARE, 2019, 91 (08):
  • [10] Bias-Corrected Estimation in Continuous Sampling Plans
    Decrouez, Geoffrey
    Robinson, Andrew
    RISK ANALYSIS, 2018, 38 (01) : 177 - 193