nprobust: Nonparametric Kernel-Based Estimation and Robust Bias-Corrected Inference

被引:11
|
作者
Calonico, Sebastian [1 ]
Cattaneo, Matias D. [2 ]
Farrell, Max H. [3 ]
机构
[1] Columbia Univ, Mailman Sch Publ Hlth, New York, NY 10027 USA
[2] Princeton Univ, Dept Operat Res & Financial Engn, Princeton, NJ 08544 USA
[3] Univ Chicago, Booth Sch Business, Chicago, IL 60637 USA
来源
JOURNAL OF STATISTICAL SOFTWARE | 2019年 / 91卷 / 08期
基金
美国国家科学基金会;
关键词
kernel-based nonparametrics; bandwidth selection; bias correction; robust inference; R; Stata; HETEROSCEDASTICITY;
D O I
10.18637/jss.v091.i08
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Nonparametric kernel density and local polynomial regression estimators are very popular in statistics, economics, and many other disciplines. They are routinely employed in applied work, either as part of the main empirical analysis or as a preliminary ingredient entering some other estimation or inference procedure. This article describes the main methodological and numerical features of the software package nprobust, which offers an array of estimation and inference procedures for nonparametric kernel-based density and local polynomial regression methods, implemented in both the R and Stata statistical platforms. The package includes not only classical bandwidth selection, estimation, and inference methods (Wand and Jones 1995; Fan and Gijbels 1996), but also other recent developments in the statistics and econometrics literatures such as robust bias-corrected inference and coverage error optimal bandwidth selection (Calonico, Cattaneo, and Farrell 2018, 2019a). Furthermore, this article also proposes a simple way of estimating optimal bandwidths in practice that always delivers the optimal mean square error convergence rate regardless of the specific evaluation point, that is, no matter whether it is implemented at a boundary or interior point. Numerical performance is illustrated using an empirical application and simulated data, where a detailed numerical comparison with other R packages is given.
引用
下载
收藏
页数:33
相关论文
共 50 条
  • [1] The efficiency of bias-corrected estimators for nonparametric kernel estimation based on local estimating equations
    Kauermann, G.
    Mueller, M.
    Carroll, R. J.
    Statistics & Probability Letters, 37 (01):
  • [2] The efficiency of bias-corrected estimators for nonparametric kernel estimation based on local estimating equations
    Kauermann, G
    Muller, M
    Carroll, RJ
    STATISTICS & PROBABILITY LETTERS, 1998, 37 (01) : 41 - 47
  • [3] Stable and bias-corrected estimation for nonparametric regression models
    Lin, Lu
    Li, Feng
    JOURNAL OF NONPARAMETRIC STATISTICS, 2008, 20 (04) : 283 - 303
  • [4] Robust and bias-corrected estimation of the coefficient of tail dependence
    Dutang, Christophe
    Goegebeur, Yuri
    Guillou, Armelle
    INSURANCE MATHEMATICS & ECONOMICS, 2014, 57 : 46 - 57
  • [5] Inference of Spmk′ based on bias-corrected methods of estimation for generalized exponential distribution
    Dey, Sanku
    Wang, Liang
    Saha, Mahendra
    INTERNATIONAL JOURNAL OF SYSTEM ASSURANCE ENGINEERING AND MANAGEMENT, 2024, : 5265 - 5278
  • [6] Bias-corrected inference for multivariate nonparametric regression: Model selection and oracle property
    Giordano, Francesco
    Parrella, Maria Lucia
    JOURNAL OF MULTIVARIATE ANALYSIS, 2016, 143 : 71 - 93
  • [7] Bias-corrected confidence bands in nonparametric regression
    Xia, YC
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1998, 60 : 797 - 811
  • [8] Robust and Bias-Corrected Estimation of the Probability of Extreme Failure Sets
    Dutang, Christophe
    Goegebeur, Yuri
    Guillou, Armelle
    SANKHYA-SERIES A-MATHEMATICAL STATISTICS AND PROBABILITY, 2016, 78 (01): : 52 - 86
  • [9] Robust and Bias-Corrected Estimation of the Probability of Extreme Failure Sets
    Dutang C.
    Goegebeur Y.
    Guillou A.
    Sankhya A, 2016, 78 (1): : 52 - 86
  • [10] A BIAS-CORRECTED NONPARAMETRIC ENVELOPMENT ESTIMATOR OF FRONTIERS
    Badin, Luiza
    Simar, Leopold
    ECONOMETRIC THEORY, 2009, 25 (05) : 1289 - 1318