nprobust: Nonparametric Kernel-Based Estimation and Robust Bias-Corrected Inference

被引:11
|
作者
Calonico, Sebastian [1 ]
Cattaneo, Matias D. [2 ]
Farrell, Max H. [3 ]
机构
[1] Columbia Univ, Mailman Sch Publ Hlth, New York, NY 10027 USA
[2] Princeton Univ, Dept Operat Res & Financial Engn, Princeton, NJ 08544 USA
[3] Univ Chicago, Booth Sch Business, Chicago, IL 60637 USA
来源
JOURNAL OF STATISTICAL SOFTWARE | 2019年 / 91卷 / 08期
基金
美国国家科学基金会;
关键词
kernel-based nonparametrics; bandwidth selection; bias correction; robust inference; R; Stata; HETEROSCEDASTICITY;
D O I
10.18637/jss.v091.i08
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Nonparametric kernel density and local polynomial regression estimators are very popular in statistics, economics, and many other disciplines. They are routinely employed in applied work, either as part of the main empirical analysis or as a preliminary ingredient entering some other estimation or inference procedure. This article describes the main methodological and numerical features of the software package nprobust, which offers an array of estimation and inference procedures for nonparametric kernel-based density and local polynomial regression methods, implemented in both the R and Stata statistical platforms. The package includes not only classical bandwidth selection, estimation, and inference methods (Wand and Jones 1995; Fan and Gijbels 1996), but also other recent developments in the statistics and econometrics literatures such as robust bias-corrected inference and coverage error optimal bandwidth selection (Calonico, Cattaneo, and Farrell 2018, 2019a). Furthermore, this article also proposes a simple way of estimating optimal bandwidths in practice that always delivers the optimal mean square error convergence rate regardless of the specific evaluation point, that is, no matter whether it is implemented at a boundary or interior point. Numerical performance is illustrated using an empirical application and simulated data, where a detailed numerical comparison with other R packages is given.
引用
下载
收藏
页数:33
相关论文
共 50 条
  • [21] Kernel-based local order estimation of nonlinear nonparametric systems
    Zhao, Wenxiao
    Chen, Han-Fu
    Bai, Er-wei
    Li, Kang
    AUTOMATICA, 2015, 51 : 243 - 254
  • [22] Nonparametric verification bias-corrected inference for the area under the ROC curve of a continuous-scale diagnostic test
    Adimari, Gianfranco
    Chiogna, Monica
    STATISTICS AND ITS INTERFACE, 2017, 10 (04) : 629 - 641
  • [23] Bias-Corrected Bootstrap Inference for Regression Models with Autocorrelated Errors
    Kim, Jae
    ECONOMICS BULLETIN, 2005, 3
  • [24] Bias-corrected estimation in dynamic panel data models
    Bun, MJG
    Carree, MA
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2005, 23 (02) : 200 - 210
  • [25] Bias-corrected estimation of stable tail dependence function
    Beirlant, Jan
    Escobar-Bach, Mikael
    Goegebeur, Yuri
    Guillou, Armelle
    JOURNAL OF MULTIVARIATE ANALYSIS, 2016, 143 : 453 - 466
  • [26] Bias-corrected estimation for speculative bubbles in stock prices
    Kruse, Robinson
    Kaufmann, Hendrik
    Wegener, Christoph
    ECONOMIC MODELLING, 2018, 73 : 354 - 364
  • [27] Bias-Corrected Estimation of Price Impact in Securities Litigation
    Dove, Taylor
    Heath, Davidson
    Heaton, J. B.
    AMERICAN LAW AND ECONOMICS REVIEW, 2019, 21 (01) : 184 - 208
  • [28] Croon's Bias-Corrected Estimation of Latent Interactions
    Cox, Kyle
    Kelcey, Benjamin
    STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2021, 28 (06) : 863 - 874
  • [29] Bias-corrected confidence intervals for wildlife abundance estimation
    Mack, YP
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2002, 31 (07) : 1107 - 1122
  • [30] Bias-corrected maximum likelihood estimation for the beta distribution
    Cordeiro, GM
    DaRocha, EC
    DaRocha, JGC
    CribariNeto, F
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 1997, 58 (01) : 21 - 35