nprobust: Nonparametric Kernel-Based Estimation and Robust Bias-Corrected Inference

被引:11
|
作者
Calonico, Sebastian [1 ]
Cattaneo, Matias D. [2 ]
Farrell, Max H. [3 ]
机构
[1] Columbia Univ, Mailman Sch Publ Hlth, New York, NY 10027 USA
[2] Princeton Univ, Dept Operat Res & Financial Engn, Princeton, NJ 08544 USA
[3] Univ Chicago, Booth Sch Business, Chicago, IL 60637 USA
来源
JOURNAL OF STATISTICAL SOFTWARE | 2019年 / 91卷 / 08期
基金
美国国家科学基金会;
关键词
kernel-based nonparametrics; bandwidth selection; bias correction; robust inference; R; Stata; HETEROSCEDASTICITY;
D O I
10.18637/jss.v091.i08
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Nonparametric kernel density and local polynomial regression estimators are very popular in statistics, economics, and many other disciplines. They are routinely employed in applied work, either as part of the main empirical analysis or as a preliminary ingredient entering some other estimation or inference procedure. This article describes the main methodological and numerical features of the software package nprobust, which offers an array of estimation and inference procedures for nonparametric kernel-based density and local polynomial regression methods, implemented in both the R and Stata statistical platforms. The package includes not only classical bandwidth selection, estimation, and inference methods (Wand and Jones 1995; Fan and Gijbels 1996), but also other recent developments in the statistics and econometrics literatures such as robust bias-corrected inference and coverage error optimal bandwidth selection (Calonico, Cattaneo, and Farrell 2018, 2019a). Furthermore, this article also proposes a simple way of estimating optimal bandwidths in practice that always delivers the optimal mean square error convergence rate regardless of the specific evaluation point, that is, no matter whether it is implemented at a boundary or interior point. Numerical performance is illustrated using an empirical application and simulated data, where a detailed numerical comparison with other R packages is given.
引用
下载
收藏
页数:33
相关论文
共 50 条
  • [41] Bias-corrected variance components estimation of Partial EIV model
    Wang L.
    Wen G.
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2019, 48 (04): : 412 - 421
  • [42] Bias-corrected quantile regression estimation of censored regression models
    P. Čížek
    S. Sadikoglu
    Statistical Papers, 2018, 59 : 215 - 247
  • [43] Kernel-based nonparametric estimation methods for a periodic replacement problem with minimal repair
    Saito, Yasuhiro
    Dohi, Tadashi
    Yun, Won Y.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART O-JOURNAL OF RISK AND RELIABILITY, 2016, 230 (01) : 54 - 66
  • [44] A note on bias-corrected estimation in dynamic panel data models
    Juodis, Arturas
    ECONOMICS LETTERS, 2013, 118 (03) : 435 - 438
  • [45] Bias-corrected estimation of noncentrality parameters of covariance structure models
    Raykov, T
    STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2005, 12 (01) : 120 - 129
  • [46] Nonparametric kernel-based sequential investment strategies
    Györfi, L
    Lugosi, G
    Udina, F
    MATHEMATICAL FINANCE, 2006, 16 (02) : 337 - 357
  • [47] Bias-Corrected Maximum Likelihood Estimation and Bayesian Inference for the Process Performance Index Using Inverse Gaussian Distribution
    Tsai, Tzong-Ru
    Xin, Hua
    Fan, Ya-Yen
    Lio, Yuhlong
    STATS, 2022, 5 (04): : 1079 - 1096
  • [48] Robust tracking with motion estimation and local Kernel-based color modeling
    Babu, R. Venkatesh
    Perez, Patrick
    Bouthemy, Patrick
    IMAGE AND VISION COMPUTING, 2007, 25 (08) : 1205 - 1216
  • [49] Bias-corrected estimators for the Vasicek model: an application in risk measure estimation
    Guo, Zi-Yi
    JOURNAL OF RISK, 2020, 23 (02): : 71 - 104
  • [50] Bias-corrected maximum likelihood estimation of the parameters of the complex Bingham distribution
    Dore, Luiz H. G.
    Amaral, Getulio J. A.
    Cruz, Jorge T. M.
    Wood, Andrew T. A.
    BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2016, 30 (03) : 385 - 400