Implicit Computational Complexity of Subrecursive Definitions and Applications to Cryptographic Proofs

被引:0
|
作者
Patrick Baillot
Gilles Barthe
Ugo Dal Lago
机构
[1] Univ Lyon,
[2] CNRS,undefined
[3] EnsL,undefined
[4] UCBL,undefined
[5] LIP,undefined
[6] IMDEA Software Institute,undefined
[7] Università di Bologna,undefined
[8] INRIA,undefined
来源
关键词
Implicit computational complexity; Complexity analysis; Linear dependent types; Cryptographic proofs;
D O I
暂无
中图分类号
学科分类号
摘要
We define a call-by-value variant of Gödel’s system T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf {T} $$\end{document} with references, and equip it with a linear dependent type and effect system, called dℓT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf {d}\ell \textsf {T} $$\end{document}, that can estimate the time complexity of programs, as a function of the size of their inputs. We prove that the type system is intentionally sound, in the sense that it over-approximates the complexity of executing the programs on a variant of the CEK abstract machine. Moreover, we define a sound and complete type inference algorithm which critically exploits the subrecursive nature of dℓT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf {d}\ell \textsf {T} $$\end{document}. Finally, we demonstrate the usefulness of dℓT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf {d}\ell \textsf {T} $$\end{document} for analyzing the complexity of cryptographic reductions by providing an upper bound for the constructed adversary of the Goldreich–Levin theorem.
引用
收藏
页码:813 / 855
页数:42
相关论文
共 50 条