Implicit Computational Complexity of Subrecursive Definitions and Applications to Cryptographic Proofs

被引:0
|
作者
Patrick Baillot
Gilles Barthe
Ugo Dal Lago
机构
[1] Univ Lyon,
[2] CNRS,undefined
[3] EnsL,undefined
[4] UCBL,undefined
[5] LIP,undefined
[6] IMDEA Software Institute,undefined
[7] Università di Bologna,undefined
[8] INRIA,undefined
来源
关键词
Implicit computational complexity; Complexity analysis; Linear dependent types; Cryptographic proofs;
D O I
暂无
中图分类号
学科分类号
摘要
We define a call-by-value variant of Gödel’s system T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf {T} $$\end{document} with references, and equip it with a linear dependent type and effect system, called dℓT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf {d}\ell \textsf {T} $$\end{document}, that can estimate the time complexity of programs, as a function of the size of their inputs. We prove that the type system is intentionally sound, in the sense that it over-approximates the complexity of executing the programs on a variant of the CEK abstract machine. Moreover, we define a sound and complete type inference algorithm which critically exploits the subrecursive nature of dℓT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf {d}\ell \textsf {T} $$\end{document}. Finally, we demonstrate the usefulness of dℓT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf {d}\ell \textsf {T} $$\end{document} for analyzing the complexity of cryptographic reductions by providing an upper bound for the constructed adversary of the Goldreich–Levin theorem.
引用
收藏
页码:813 / 855
页数:42
相关论文
共 50 条
  • [31] Alternative Definitions of Complexity for Practical Applications of Model Selection Criteria
    Andrea, Murari
    Rossi, Riccardo
    Craciunescu, Teddy
    COMPLEXITY, 2021, 2021
  • [32] Computational Model of Card-Based Cryptographic Protocols and Its Applications
    Mizuki, Takaaki
    Shizuya, Hiroki
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2017, E100A (01) : 3 - 11
  • [33] Explaining the Implicit Parallelism of Genetic Algorithm and Computational Complexity by Quantum Theory
    Peng, Wang
    ISCSCT 2008: INTERNATIONAL SYMPOSIUM ON COMPUTER SCIENCE AND COMPUTATIONAL TECHNOLOGY, VOL 1, PROCEEDINGS, 2008, : 463 - 466
  • [34] Special issue - Developments in implicit computational complexity, 2014 and 2015 Preface
    Gaboardi, Marco
    Schoepp, Ulrich
    INFORMATION AND COMPUTATION, 2018, 261 : 1 - 2
  • [35] Implicit functions over finite fields and their applications to good cryptographic functions and linear codes ☆,☆☆
    Yuan, Mu
    Qu, Longjiang
    Li, Kangquan
    Wang, Xiaoqiang
    FINITE FIELDS AND THEIR APPLICATIONS, 2025, 103
  • [36] The Computational Complexity of the Game of Set and Its Theoretical Applications
    Lampis, Michael
    Mitsou, Valia
    LATIN 2014: THEORETICAL INFORMATICS, 2014, 8392 : 24 - 34
  • [37] Alternative measures of computational complexity with applications to agnostic learning
    Ben-David, Shai
    THEORY AND APPLICATIONS OF MODELS OF COMPUTATION, PROCEEDINGS, 2006, 3959 : 231 - 235
  • [38] Fixed interval scheduling: Models, applications, computational complexity and algorithms
    Kovalyov, Mikhail Y.
    Ng, C. T.
    Cheng, T. C. Edwin
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2007, 178 (02) : 331 - 342
  • [39] Extending the implicit computational complexity approach to the sub-elementary time-space classes
    Covino, Emanuele
    Pani, Giovanni
    Caporaso, Salvatore
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2000, 1767 : 239 - 252
  • [40] Extending the implicit computational complexity approach to the sub-elementary time-space classes
    Covino, E
    Pani, G
    Caporaso, S
    ALGORITHMS AND COMPLEXITY, 2000, 1767 : 239 - 252