Implicit Computational Complexity of Subrecursive Definitions and Applications to Cryptographic Proofs

被引:0
|
作者
Patrick Baillot
Gilles Barthe
Ugo Dal Lago
机构
[1] Univ Lyon,
[2] CNRS,undefined
[3] EnsL,undefined
[4] UCBL,undefined
[5] LIP,undefined
[6] IMDEA Software Institute,undefined
[7] Università di Bologna,undefined
[8] INRIA,undefined
来源
关键词
Implicit computational complexity; Complexity analysis; Linear dependent types; Cryptographic proofs;
D O I
暂无
中图分类号
学科分类号
摘要
We define a call-by-value variant of Gödel’s system T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf {T} $$\end{document} with references, and equip it with a linear dependent type and effect system, called dℓT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf {d}\ell \textsf {T} $$\end{document}, that can estimate the time complexity of programs, as a function of the size of their inputs. We prove that the type system is intentionally sound, in the sense that it over-approximates the complexity of executing the programs on a variant of the CEK abstract machine. Moreover, we define a sound and complete type inference algorithm which critically exploits the subrecursive nature of dℓT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf {d}\ell \textsf {T} $$\end{document}. Finally, we demonstrate the usefulness of dℓT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf {d}\ell \textsf {T} $$\end{document} for analyzing the complexity of cryptographic reductions by providing an upper bound for the constructed adversary of the Goldreich–Levin theorem.
引用
收藏
页码:813 / 855
页数:42
相关论文
共 50 条
  • [11] Automated implicit computational complexity analysis
    Avanzini, Martin
    Moser, Georg
    Schnabl, Andreas
    AUTOMATED REASONING, PROCEEDINGS, 2008, 5195 : 132 - +
  • [12] Program analysis for implicit computational complexity
    Jones, ND
    PROGRAMS AS DATA OBJECTS, PROCEEDINGS, 2001, 2053 : 1 - 1
  • [14] Probabilistic Recursion Theory and Implicit Computational Complexity
    Dal Lago, Ugo
    Zuppiroli, Sara
    Gabbrielli, Maurizio
    SCIENTIFIC ANNALS OF COMPUTER SCIENCE, 2014, 24 (02) : 177 - 216
  • [16] Probabilistic Recursion Theory and Implicit Computational Complexity
    Dal Lago, Ugo
    Zuppiroli, Sara
    THEORETICAL ASPECTS OF COMPUTING - ICTAC 2014, 2014, 8687 : 97 - 114
  • [17] Computational Complexity of Modified Blowfish Cryptographic Algorithm on Video Data
    Adeniyi, Abidemi Emmanuel
    Misra, Sanjay
    Daniel, Eniola
    Bokolo, Anthony, Jr.
    ALGORITHMS, 2022, 15 (10)
  • [18] Methods of reducing bio-cryptographic algorithms computational complexity
    Velciu, Marius-Alexandru
    Patriciu, Victor-Valeriu
    2014 IEEE 15TH INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND INFORMATICS (CINTI), 2014, : 153 - 158
  • [19] A note on universal measures for weak implicit computational complexity
    Beckmann, A
    LOGIC FOR PROGRAMMING, ARTIFICIAL INTELLIGENCE, AND REASONING, 2002, 2514 : 53 - 67
  • [20] Evolving Graph-Structures and Their Implicit Computational Complexity
    Leivant, Daniel
    Marion, Jean-Yves
    AUTOMATA, LANGUAGES, AND PROGRAMMING, PT II, 2013, 7966 : 349 - 360