Implicit Computational Complexity of Subrecursive Definitions and Applications to Cryptographic Proofs

被引:0
|
作者
Patrick Baillot
Gilles Barthe
Ugo Dal Lago
机构
[1] Univ Lyon,
[2] CNRS,undefined
[3] EnsL,undefined
[4] UCBL,undefined
[5] LIP,undefined
[6] IMDEA Software Institute,undefined
[7] Università di Bologna,undefined
[8] INRIA,undefined
来源
关键词
Implicit computational complexity; Complexity analysis; Linear dependent types; Cryptographic proofs;
D O I
暂无
中图分类号
学科分类号
摘要
We define a call-by-value variant of Gödel’s system T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf {T} $$\end{document} with references, and equip it with a linear dependent type and effect system, called dℓT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf {d}\ell \textsf {T} $$\end{document}, that can estimate the time complexity of programs, as a function of the size of their inputs. We prove that the type system is intentionally sound, in the sense that it over-approximates the complexity of executing the programs on a variant of the CEK abstract machine. Moreover, we define a sound and complete type inference algorithm which critically exploits the subrecursive nature of dℓT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf {d}\ell \textsf {T} $$\end{document}. Finally, we demonstrate the usefulness of dℓT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf {d}\ell \textsf {T} $$\end{document} for analyzing the complexity of cryptographic reductions by providing an upper bound for the constructed adversary of the Goldreich–Levin theorem.
引用
收藏
页码:813 / 855
页数:42
相关论文
共 50 条
  • [1] Implicit Computational Complexity of Subrecursive Definitions and Applications to Cryptographic Proofs
    Baillot, Patrick
    Barthe, Gilles
    Dal Lago, Ugo
    LOGIC FOR PROGRAMMING, ARTIFICIAL INTELLIGENCE, AND REASONING, (LPAR-20 2015), 2015, 9450 : 203 - 218
  • [2] Implicit Computational Complexity of Subrecursive Definitions and Applications to Cryptographic Proofs
    Baillot, Patrick
    Barthe, Gilles
    Dal Lago, Ugo
    JOURNAL OF AUTOMATED REASONING, 2019, 63 (04) : 813 - 855
  • [3] Formal security proofs with minimal fuss: Implicit computational complexity at work
    Nowak, David
    Zhang, Yu
    INFORMATION AND COMPUTATION, 2015, 241 : 96 - 113
  • [4] Cryptographic Accumulators: New Definitions, Enhanced Security, and Delegatable Proofs
    Barthoulot, Anais
    Blazy, Olivier
    Canard, Sebastien
    PROGRESS IN CRYPTOLOGY, AFRICACRYPT 2024, 2024, 14861 : 94 - 119
  • [5] Computational complexity and mathematical proofs
    Hartmanis, J
    INFORMATICS - 10 YEARS BACK, 10 YEARS AHEAD, 2001, 2000 : 251 - 256
  • [6] Implicit computational complexity
    Marion, JY
    THEORETICAL COMPUTER SCIENCE, 2004, 318 (1-2) : 1 - 1
  • [7] errors in computational complexity proofs for protocols
    Choo, KKR
    Boyd, C
    Hitchcock, Y
    ADVANCES IN CRYPTOLOGY ASIACRYPT 2005, 2005, 3788 : 624 - 643
  • [8] Quantum implicit computational complexity
    Dal Lago, Ugo
    Masini, Andrea
    Zorzi, Margherita
    THEORETICAL COMPUTER SCIENCE, 2010, 411 (02) : 377 - 409
  • [9] Developments in implicit computational complexity
    Marion, Jean-Yves
    INFORMATION AND COMPUTATION, 2015, 241 : 1 - 2
  • [10] Special Issue on Implicit Computational Complexity
    Baillot, Patrick
    Marion, Jean-Yves
    Della Rocca, Simona Ronchi
    ACM TRANSACTIONS ON COMPUTATIONAL LOGIC, 2009, 10 (04)