Spinodal Decomposition¶for the Cahn–Hilliard–Cook Equation

被引:0
|
作者
Dirk Blömker
Stanislaus Maier-Paape
Thomas Wanner
机构
[1] Institut für Mathematik,
[2] Universität Augsburg,undefined
[3] 86135 Augsburg,undefined
[4] Germany.¶E-mail: bloemker@math.uni-augsburg.de; maier@math.uni-augsburg.de,undefined
[5] Department of Mathematics and Statistics,undefined
[6] University of Maryland,undefined
[7] Baltimore County,undefined
[8] Baltimore,undefined
[9] ¶MD 21250,undefined
[10] USA. E-mail: wanner@math.umbc.edu,undefined
来源
关键词
Phase Separation; Homogeneous State; Positive Parameter; Atomic Scale; Spinodal Decomposition;
D O I
暂无
中图分类号
学科分类号
摘要
This paper gives theoretical results on spinodal decomposition for the stochastic Cahn–Hilliard–Cook equation, which is a Cahn–Hilliard equation perturbed by additive stochastic noise. We prove that most realizations of the solution which start at a homogeneous state in the spinodal interval exhibit phase separation, leading to the formation of complex patterns of a characteristic size.
引用
收藏
页码:553 / 582
页数:29
相关论文
共 50 条
  • [21] A STUDY ON THE VALIDITY OF THE CAHN-HILLIARD THEORY OF NUCLEATION AND SPINODAL DECOMPOSITION
    HEERMANN, DW
    BINDER, K
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1984, 188 (AUG): : 13 - COLL
  • [22] Linear Stability Analysis of the Cahn-Hilliard Equation in Spinodal Region
    Ham, Seokjun
    Jeong, Darae
    Kim, Hyundong
    Lee, Chaeyoung
    Kwak, Soobin
    Hwang, Youngjin
    Kim, Junseok
    JOURNAL OF FUNCTION SPACES, 2022, 2022
  • [23] Spinodal decomposition for the Cahn-Hilliard equation in higher dimensions. Part I: Probability and wavelength estimate
    Maier-Paape, S
    Wanner, T
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 195 (02) : 435 - 464
  • [24] MONTE-CARLO SIMULATION OF THE CAHN-HILLIARD MODEL OF SPINODAL DECOMPOSITION
    MILCHEV, A
    HEERMANN, DW
    BINDER, K
    ACTA METALLURGICA, 1988, 36 (02): : 377 - 383
  • [25] Modelling spinodal decomposition at the atomic scale: Beyond the Cahn-Hilliard model
    Hyde, JM
    Sutton, AP
    Harris, JRG
    Cerezo, A
    Gardiner, A
    MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 1996, 4 (01) : 33 - 54
  • [26] Oscillatory solutions to the system of Allen-Cahn and Cahn-Hilliard equations: A spinodal decomposition model
    Krasnyuk, I. B.
    PHYSICS OF THE SOLID STATE, 2006, 48 (11) : 2161 - 2170
  • [27] Oscillatory solutions to the system of Allen-Cahn and Cahn-Hilliard equations: A spinodal decomposition model
    I. B. Krasnyuk
    Physics of the Solid State, 2006, 48 : 2161 - 2170
  • [28] Spinodal decomposition-inspired metamaterial: Tailored homogenized elastic properties via the dimensionless Cahn-Hilliard equation
    Mandolesi, B.
    Iandiorio, C.
    Belardi, V. G.
    Vivio, F.
    EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2025, 112
  • [29] Finite-element approximation of the linearized Cahn-Hilliard-Cook equation
    Larsson, Stig
    Mesforush, Ali
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2011, 31 (04) : 1315 - 1333
  • [30] Conforming finite element methods for the stochastic Cahn-Hilliard-Cook equation
    Chai, Shimin
    Cao, Yanzhao
    Zou, Yongkui
    Zhao, Wenju
    APPLIED NUMERICAL MATHEMATICS, 2018, 124 : 44 - 56