Binomial permutations over finite fields with even characteristic

被引:0
|
作者
Ziran Tu
Xiangyong Zeng
Yupeng Jiang
Yan Li
机构
[1] Hubei University,Faculty of Mathematics and Statistics, Hubei Key Laboratory of Applied Mathematics
[2] Beihang University,School of Cyber Science and Technology
来源
Designs, Codes and Cryptography | 2021年 / 89卷
关键词
Finite field; Permutation polynomial; Permutation binomial; 05A05; 11T06; 11T55;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study binomials having the form xr(a+x3(q-1))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x^r(a+x^{3(q-1)})$$\end{document} over the finite field Fq2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_{q^2}$$\end{document} with q=2m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q=2^m$$\end{document}, and determine all the r’s and coefficients a’s making them permutations. For even m or odd m with 3∤m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3\not \mid m$$\end{document}, we prove that the characterization is necessary and sufficient. For the case of odd m and 3∣m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3\mid m$$\end{document}, we prove that the corresponding sufficient condition is also necessary for almost all r’s. Finally we obtain that the proportion of r’s we cannot prove the necessity is only about 140\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{1}{40}$$\end{document}.
引用
收藏
页码:2869 / 2888
页数:19
相关论文
共 50 条
  • [41] Two classes of permutation trinomials with Niho exponents over finite fields with even characteristic
    Zheng, Lijing
    Kan, Haibin
    Peng, Jie
    FINITE FIELDS AND THEIR APPLICATIONS, 2020, 68
  • [42] On Permutations Induced by Tame Automorphisms Over Finite Fields
    Hakuta, Keisuke
    ACTA MATHEMATICA VIETNAMICA, 2018, 43 (02) : 309 - 324
  • [43] Classification of fractional projective permutations over finite fields
    Gologlu, Faruk
    FINITE FIELDS AND THEIR APPLICATIONS, 2022, 81
  • [44] On Deep Holes of Projective Reed-Solomon Codes over Finite Fields with Even Characteristic
    XU Xiaofan
    Wuhan University Journal of Natural Sciences, 2023, 28 (01) : 15 - 19
  • [45] Curves of genus two over fields of even characteristic
    Cardona, G
    Nart, E
    Pujolàs, J
    MATHEMATISCHE ZEITSCHRIFT, 2005, 250 (01) : 177 - 201
  • [46] Curves of genus two over fields of even characteristic
    Gabriel Cardona
    Enric Nart
    Jordi Pujolàs
    Mathematische Zeitschrift, 2005, 250 : 177 - 201
  • [47] Some permutations and complete permutation polynomials over finite fields
    Ongan, Pinar
    Temur, Burcu Gulmez
    TURKISH JOURNAL OF MATHEMATICS, 2019, 43 (05) : 2154 - 2160
  • [48] A strengthening of McConnel's theorem on permutations over finite fields
    Yip, Chi Hoi
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2025, 68 (01): : 213 - 218
  • [49] Counting isomorphism classes of pointed hyperelliptic curves of genus 4 over finite fields with even characteristic
    Chu, Huah
    Deng, Ying Pu
    Yang, Tse-Chung
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2010, 26 (06) : 1019 - 1054
  • [50] Generalized Hamming Weights of Linear Codes From Quadratic Forms Over Finite Fields of Even Characteristic
    Liu C.
    Zheng D.
    Wang X.
    IEEE Trans. Inf. Theory, 2023, 9 (5676-5686): : 5676 - 5686