Binomial permutations over finite fields with even characteristic

被引:0
|
作者
Ziran Tu
Xiangyong Zeng
Yupeng Jiang
Yan Li
机构
[1] Hubei University,Faculty of Mathematics and Statistics, Hubei Key Laboratory of Applied Mathematics
[2] Beihang University,School of Cyber Science and Technology
来源
Designs, Codes and Cryptography | 2021年 / 89卷
关键词
Finite field; Permutation polynomial; Permutation binomial; 05A05; 11T06; 11T55;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study binomials having the form xr(a+x3(q-1))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x^r(a+x^{3(q-1)})$$\end{document} over the finite field Fq2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_{q^2}$$\end{document} with q=2m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q=2^m$$\end{document}, and determine all the r’s and coefficients a’s making them permutations. For even m or odd m with 3∤m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3\not \mid m$$\end{document}, we prove that the characterization is necessary and sufficient. For the case of odd m and 3∣m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3\mid m$$\end{document}, we prove that the corresponding sufficient condition is also necessary for almost all r’s. Finally we obtain that the proportion of r’s we cannot prove the necessity is only about 140\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{1}{40}$$\end{document}.
引用
收藏
页码:2869 / 2888
页数:19
相关论文
共 50 条