Binomial permutations over finite fields with even characteristic

被引:0
|
作者
Ziran Tu
Xiangyong Zeng
Yupeng Jiang
Yan Li
机构
[1] Hubei University,Faculty of Mathematics and Statistics, Hubei Key Laboratory of Applied Mathematics
[2] Beihang University,School of Cyber Science and Technology
来源
Designs, Codes and Cryptography | 2021年 / 89卷
关键词
Finite field; Permutation polynomial; Permutation binomial; 05A05; 11T06; 11T55;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study binomials having the form xr(a+x3(q-1))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x^r(a+x^{3(q-1)})$$\end{document} over the finite field Fq2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_{q^2}$$\end{document} with q=2m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q=2^m$$\end{document}, and determine all the r’s and coefficients a’s making them permutations. For even m or odd m with 3∤m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3\not \mid m$$\end{document}, we prove that the characterization is necessary and sufficient. For the case of odd m and 3∣m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3\mid m$$\end{document}, we prove that the corresponding sufficient condition is also necessary for almost all r’s. Finally we obtain that the proportion of r’s we cannot prove the necessity is only about 140\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{1}{40}$$\end{document}.
引用
收藏
页码:2869 / 2888
页数:19
相关论文
共 50 条
  • [21] Hyperelliptic curves of genus three over finite fields of even characteristic
    Nart, E
    Sadornil, D
    FINITE FIELDS AND THEIR APPLICATIONS, 2004, 10 (02) : 198 - 220
  • [22] ONE CLASS OF PERMUTATION POLYNOMIALS OVER FINITE FIELDS OF EVEN CHARACTERISTIC
    Bassalygo, L. A.
    Zinoviev, V. A.
    MOSCOW MATHEMATICAL JOURNAL, 2015, 15 (04) : 703 - 713
  • [23] Further results on permutation trinomials over finite fields with even characteristic
    Zha, Zhengbang
    Hu, Lei
    Fan, Shuqin
    FINITE FIELDS AND THEIR APPLICATIONS, 2017, 45 : 43 - 52
  • [24] The Complete Differential Spectrum of a Class of Power Permutations Over Odd Characteristic Finite Fields
    Yan, Haode
    Mesnager, Sihem
    Tan, Xiantong
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2023, 69 (11) : 7426 - 7438
  • [26] Some new classes of permutation trinomials over finite fields with even characteristic
    Gupta, Rohit
    Sharma, R. K.
    FINITE FIELDS AND THEIR APPLICATIONS, 2016, 41 : 89 - 96
  • [27] On an iterated construction of irreducible polynomials over finite fields of even characteristic by Kyuregyan
    Simone Ugolini
    Czechoslovak Mathematical Journal, 2016, 66 : 243 - 250
  • [28] Quadratic forms of codimension 2 over certain finite fields of even characteristic
    Ozbudak, Ferruh
    Saygi, Elif
    Saygi, Zulfukar
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2011, 3 (04): : 241 - 257
  • [29] Quadratic forms of codimension 2 over certain finite fields of even characteristic
    Ferruh Özbudak
    Elif Saygı
    Zülfükar Saygı
    Cryptography and Communications, 2011, 3 : 241 - 257
  • [30] Four Classes of Bivariate Permutation Polynomials over Finite Fields of Even Characteristic
    Chen, Changhui
    Kan, Haibin
    Peng, Jie
    Wang, Li
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2024, E107A (07) : 1045 - 1048