Binomial permutations over finite fields with even characteristic

被引:0
|
作者
Ziran Tu
Xiangyong Zeng
Yupeng Jiang
Yan Li
机构
[1] Hubei University,Faculty of Mathematics and Statistics, Hubei Key Laboratory of Applied Mathematics
[2] Beihang University,School of Cyber Science and Technology
来源
关键词
Finite field; Permutation polynomial; Permutation binomial; 05A05; 11T06; 11T55;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study binomials having the form xr(a+x3(q-1))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x^r(a+x^{3(q-1)})$$\end{document} over the finite field Fq2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_{q^2}$$\end{document} with q=2m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q=2^m$$\end{document}, and determine all the r’s and coefficients a’s making them permutations. For even m or odd m with 3∤m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3\not \mid m$$\end{document}, we prove that the characterization is necessary and sufficient. For the case of odd m and 3∣m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3\mid m$$\end{document}, we prove that the corresponding sufficient condition is also necessary for almost all r’s. Finally we obtain that the proportion of r’s we cannot prove the necessity is only about 140\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{1}{40}$$\end{document}.
引用
收藏
页码:2869 / 2888
页数:19
相关论文
共 50 条
  • [1] Binomial permutations over finite fields with even characteristic
    Tu, Ziran
    Zeng, Xiangyong
    Jiang, Yupeng
    Li, Yan
    DESIGNS CODES AND CRYPTOGRAPHY, 2021, 89 (12) : 2869 - 2888
  • [2] On non-monomial APcN permutations over finite fields of even characteristic
    Jeong, Jaeseong
    Koo, Namhun
    Kwon, Soonhak
    FINITE FIELDS AND THEIR APPLICATIONS, 2023, 89
  • [3] BINOMIAL PERMUTATIONS OF FINITE-FIELDS
    CHOU, WS
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1988, 38 (03) : 325 - 327
  • [4] PERMUTATION TRINOMIALS OVER FINITE FIELDS WITH EVEN CHARACTERISTIC
    Ding, Cunsheng
    Qu, Longjiang
    Wang, Qiang
    Yuan, Jin
    Yuan, Pingzhi
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2015, 29 (01) : 79 - 92
  • [5] Triple-Cycle Permutations Over Finite Fields of Characteristic Two
    Liu, Xianping
    Chen, Yuan
    Xu, Yunge
    Sun, Zhimin
    INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2019, 30 (02) : 275 - 292
  • [6] Irreducible compositions of polynomials over finite fields of even characteristic
    Saeid Mehrabi
    Melsik K. Kyuregyan
    Applicable Algebra in Engineering, Communication and Computing, 2012, 23 : 207 - 220
  • [7] Some permutation pentanomials over finite fields with even characteristic
    Xu, Guangkui
    Cao, Xiwang
    Ping, Jingshui
    FINITE FIELDS AND THEIR APPLICATIONS, 2018, 49 : 212 - 226
  • [8] Irreducible compositions of polynomials over finite fields of even characteristic
    Mehrabi, Saeid
    Kyuregyan, Melsik K.
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2012, 23 (5-6) : 207 - 220
  • [9] Constructions of irreducible polynomials over finite fields with even characteristic
    Sharma, P. L.
    Ashima
    Gupta, Shalini
    Harish, Mansi
    Kumar, Sushil
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2023, 54 (03): : 734 - 742
  • [10] Symmetric bilinear forms over finite fields of even characteristic
    Schmidt, Kai-Uwe
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2010, 117 (08) : 1011 - 1026