On the rigidity of hypersurfaces into space forms

被引:0
|
作者
Abdênago Barros
Cícero Aquino
Henrique de Lima
机构
[1] Universidade Federal do Ceará,Departamento de Matemática
[2] Universidade Federal do Piauí,Departamento de Matemática
[3] Universidade Federal de Campina Grande,Departamento de Matemática e Estatística
来源
关键词
Space forms; Complete hypersurfaces; Totally geodesic hypersurfaces; Gauss mapping; Higher order mean curvatures; Index of minimum relative nullity; 53C42;
D O I
暂无
中图分类号
学科分类号
摘要
Our purpose is to study the rigidity of complete hypersurfaces immersed into a Riemannian space form. In this setting, first we use a classical characterization of the Euclidean sphere \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb S ^{n+1}$$\end{document} due to Obata (J Math Soc Jpn 14:333–340, 1962) in order to prove that a closed orientable hypersurface \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Sigma ^n$$\end{document} immersed with null second-order mean curvature in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb S ^{n+1}$$\end{document} must be isometric to a totally geodesic sphere \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb S ^{n}$$\end{document}, provided that its Gauss mapping is contained in a closed hemisphere. Furthermore, as suitable applications of a maximum principle at the infinity for complete noncompact Riemannian manifolds due to Yau (Indiana Univ Math J 25:659–670, 1976), we establish new characterizations of totally geodesic hypersurfaces in the Euclidean and hyperbolic spaces. We also obtain a lower estimate of the index of minimum relative nullity concerning complete noncompact hypersurfaces immersed in such ambient spaces.
引用
收藏
页码:689 / 698
页数:9
相关论文
共 50 条
  • [1] On the rigidity of hypersurfaces into space forms
    Barros, Abdenago
    Aquino, Cicero
    de Lima, Henrique
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2014, 193 (03) : 689 - 698
  • [2] Homotopical and topological rigidity of hypersurfaces of spherical space forms
    Pedro Zühlke
    Israel Journal of Mathematics, 2019, 234 : 645 - 675
  • [3] Rigidity results for compact biconservative hypersurfaces in space forms
    Andronic, Stefan
    Kayhan, Aykut
    JOURNAL OF GEOMETRY AND PHYSICS, 2025, 212
  • [4] Rigidity for Closed Totally Umbilical Hypersurfaces in Space Forms
    Cheng, Xu
    Zhou, Detang
    JOURNAL OF GEOMETRIC ANALYSIS, 2014, 24 (03) : 1337 - 1345
  • [5] HOMOTOPICAL AND TOPOLOGICAL RIGIDITY OF HYPERSURFACES OF SPHERICAL SPACE FORMS
    Zuhlke, Pedro
    ISRAEL JOURNAL OF MATHEMATICS, 2019, 234 (02) : 645 - 675
  • [6] TOPOLOGICAL RIGIDITY FOR CLOSED HYPERSURFACES OF ELLIPTIC SPACE FORMS
    Rosinato Longa, Eduardo
    Bruck Ripoll, Jaime
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2019, 62 (04) : 1063 - 1072
  • [7] Rigidity for Closed Totally Umbilical Hypersurfaces in Space Forms
    Xu Cheng
    Detang Zhou
    The Journal of Geometric Analysis, 2014, 24 : 1337 - 1345
  • [8] Local rigidity of constant mean curvature hypersurfaces in space forms
    Chen, Yayun
    Li, Tongzhu
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 543 (02)
  • [9] Rigidity of hypersurfaces with constant higher order mean curvature in space forms
    Melendez, Josue
    Palmas, Oscar
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2022, 28 (02):
  • [10] Rigidity of hypersurfaces with constant higher order mean curvature in space forms
    Josué Meléndez
    Oscar Palmas
    Boletín de la Sociedad Matemática Mexicana, 2022, 28