Analysis on general meshes of a discrete duality finite volume method for subsurface flow problems

被引:0
|
作者
A. Njifenjou
H. Donfack
I. Moukouop-Nguena
机构
[1] University of Yaounde I,National Advanced School of Engineering
[2] African Institute of Computer Science,Faculty of Science
[3] University of Yaounde I,undefined
来源
Computational Geosciences | 2013年 / 17卷
关键词
Flow problems; Nonhomogeneous anisotropic media; Discrete duality finite volumes; Stability and error estimates; Numerical tests; 35J65; 65N15; 74S10;
D O I
暂无
中图分类号
学科分类号
摘要
This work presents and analyzes, on unstructured grids, a discrete duality finite volume method (DDFV method for short) for 2D-flow problems in nonhomogeneous anisotropic porous media. The derivation of a symmetric discrete problem is established. The existence and uniqueness of a solution to this discrete problem are shown via the positive definiteness of its associated matrix. Properties of this matrix combined with adequate assumptions on data allow to define a discrete energy norm. Stability and error estimate results are proven with respect to this norm. L2-error estimates follow from a discrete Poincaré inequality and an L ∞ -error estimate is given for a P1-DDFV solution. Numerical tests and comparison with other schemes (especially those from FVCA5 benchmark) are provided.
引用
收藏
页码:391 / 415
页数:24
相关论文
共 50 条
  • [41] A finite volume method for approximating 3D diffusion operators on general meshes
    Hermeline, F.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (16) : 5763 - 5786
  • [42] EXTRAPOLATION OF THE FINITE ELEMENT METHOD ON GENERAL MESHES
    Lin, Qun
    Xie, Hehu
    [J]. INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2013, 10 (01) : 139 - 153
  • [43] Treating highly anisotropic subsurface flow with the multiscale finite-volume method
    Lunati, Ivan
    Jenny, Patrick
    [J]. MULTISCALE MODELING & SIMULATION, 2007, 6 (01): : 308 - 318
  • [44] A VIRTUAL VOLUME METHOD FOR HETEROGENEOUS AND ANISOTROPIC DIFFUSION-REACTION PROBLEMS ON GENERAL MESHES
    Coatleven, Julien
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2017, 51 (03): : 797 - 824
  • [45] Numerical analysis of a nonlinear discrete duality finite volume scheme for Leray-Lions type elliptic problems in Orlicz spaces
    Lahmi, B.
    Rhoudaf, M.
    Staili, N.
    [J]. APPLIED NUMERICAL MATHEMATICS, 2023, 185 : 406 - 433
  • [46] DISCRETE DUALITY FINITE VOLUME SCHEME FOR SOLVING HESTON MODEL
    Handlovicova, Angela
    [J]. PROCEEDINGS OF THE CONFERENCE ALGORITMY 2016, 2016, : 264 - 274
  • [47] STUDY OF DISCRETE DUALITY FINITE VOLUME SCHEMES FOR THE PEACEMAN MODEL
    Chainais-Hillairet, C.
    Krell, S.
    Mouton, A.
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2013, 35 (06): : A2928 - A2952
  • [48] Discrete duality finite volume method with tangential redistribution of points for surfaces evolving by mean curvature
    Tomek, Lukas
    Mikula, Karol
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2019, 53 (06): : 1797 - 1840
  • [49] A finite volume method on general meshes for a degenerate parabolic convection-reaction-diffusion equation
    Angelini, Ophelie
    Brenner, Konstantin
    Hilhorst, Danielle
    [J]. NUMERISCHE MATHEMATIK, 2013, 123 (02) : 219 - 257
  • [50] Analysis of the Finite Volume Method for Degenerate Diffusion Problems
    Saito, Norikazu
    [J]. NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS I-III, 2010, 1281 : 663 - 666