Analysis on general meshes of a discrete duality finite volume method for subsurface flow problems

被引:0
|
作者
A. Njifenjou
H. Donfack
I. Moukouop-Nguena
机构
[1] University of Yaounde I,National Advanced School of Engineering
[2] African Institute of Computer Science,Faculty of Science
[3] University of Yaounde I,undefined
来源
Computational Geosciences | 2013年 / 17卷
关键词
Flow problems; Nonhomogeneous anisotropic media; Discrete duality finite volumes; Stability and error estimates; Numerical tests; 35J65; 65N15; 74S10;
D O I
暂无
中图分类号
学科分类号
摘要
This work presents and analyzes, on unstructured grids, a discrete duality finite volume method (DDFV method for short) for 2D-flow problems in nonhomogeneous anisotropic porous media. The derivation of a symmetric discrete problem is established. The existence and uniqueness of a solution to this discrete problem are shown via the positive definiteness of its associated matrix. Properties of this matrix combined with adequate assumptions on data allow to define a discrete energy norm. Stability and error estimate results are proven with respect to this norm. L2-error estimates follow from a discrete Poincaré inequality and an L ∞ -error estimate is given for a P1-DDFV solution. Numerical tests and comparison with other schemes (especially those from FVCA5 benchmark) are provided.
引用
收藏
页码:391 / 415
页数:24
相关论文
共 50 条
  • [31] DISCRETE DUALITY FINITE VOLUME APPLIED TO SOIL EROSION
    Lakhlili, J.
    Galusinski, C.
    Golay, F.
    TOPICAL PROBLEMS OF FLUID MECHANICS 2015, 2015, : 99 - 104
  • [32] CONVERGENCE ANALYSIS OF THE DISCRETE DUALITY FINITE VOLUME SCHEME FOR THE REGULARISED HESTON MODEL
    Tibensky, Matus
    Handlovicova, Angela
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2021, 14 (03): : 1181 - 1195
  • [33] FINITE VOLUME SCHEMES FOR THE BIHARMONIC PROBLEM ON GENERAL MESHES
    Eymard, R.
    Gallouet, T.
    Herbin, R.
    Linke, A.
    MATHEMATICS OF COMPUTATION, 2012, 81 (280) : 2019 - 2048
  • [34] A 3D DISCRETE DUALITY FINITE VOLUME METHOD FOR NONLINEAR ELLIPTIC EQUATIONS
    Coudiere, Yves
    Hubert, Florence
    ALGORITMY 2009: 18TH CONFERENCE ON SCIENTIFIC COMPUTING, 2009, : 51 - 60
  • [35] Generalized finite difference method (GFDM) based analysis for subsurface flow problems in anisotropic formation
    Zhan, Wentao
    Rao, Xiang
    Zhao, Hui
    Zhang, Hairong
    Hu, Siwei
    Dai, Weixin
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2022, 140 : 48 - 58
  • [36] The discrete duality finite volume method for a class of quasi-Newtonian Stokes flows
    He, Zhengkang
    Li, Rui
    Chen, Jie
    Chen, Zhangxin
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2019, 35 (06) : 2193 - 2220
  • [37] A 3D DISCRETE DUALITY FINITE VOLUME METHOD FOR NONLINEAR ELLIPTIC EQUATIONS
    Coudiere, Yves
    Hubert, Florence
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2011, 33 (04): : 1739 - 1764
  • [38] A finite volume method on general meshes for a degenerate parabolic convection–reaction–diffusion equation
    Ophélie Angelini
    Konstantin Brenner
    Danielle Hilhorst
    Numerische Mathematik, 2013, 123 : 219 - 257
  • [39] Convergence of the finite volume MPFA O scheme for heterogeneous anisotropic diffusion problems on general meshes
    Agelas, Leo
    Masson, Roland
    COMPTES RENDUS MATHEMATIQUE, 2008, 346 (17-18) : 1007 - 1012
  • [40] A finite volume element scheme with a monotonicity correction for anisotropic diffusion problems on general quadrilateral meshes
    Gao, Yanni
    Yuan, Guangwei
    Wang, Shuai
    Hang, Xudeng
    JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 407