Analysis on general meshes of a discrete duality finite volume method for subsurface flow problems

被引:0
|
作者
A. Njifenjou
H. Donfack
I. Moukouop-Nguena
机构
[1] University of Yaounde I,National Advanced School of Engineering
[2] African Institute of Computer Science,Faculty of Science
[3] University of Yaounde I,undefined
来源
Computational Geosciences | 2013年 / 17卷
关键词
Flow problems; Nonhomogeneous anisotropic media; Discrete duality finite volumes; Stability and error estimates; Numerical tests; 35J65; 65N15; 74S10;
D O I
暂无
中图分类号
学科分类号
摘要
This work presents and analyzes, on unstructured grids, a discrete duality finite volume method (DDFV method for short) for 2D-flow problems in nonhomogeneous anisotropic porous media. The derivation of a symmetric discrete problem is established. The existence and uniqueness of a solution to this discrete problem are shown via the positive definiteness of its associated matrix. Properties of this matrix combined with adequate assumptions on data allow to define a discrete energy norm. Stability and error estimate results are proven with respect to this norm. L2-error estimates follow from a discrete Poincaré inequality and an L ∞ -error estimate is given for a P1-DDFV solution. Numerical tests and comparison with other schemes (especially those from FVCA5 benchmark) are provided.
引用
收藏
页码:391 / 415
页数:24
相关论文
共 50 条
  • [21] Multi-scale finite-volume method for elliptic problems in subsurface flow simulation
    Jenny, P
    Lee, SH
    Tchelepi, HA
    JOURNAL OF COMPUTATIONAL PHYSICS, 2003, 187 (01) : 47 - 67
  • [22] A numerical stabilization framework for viscoelastic fluid flow using the finite volume method on general unstructured meshes
    Niethammer, M.
    Marschall, H.
    Kunkelmann, C.
    Bothe, D.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2018, 86 (02) : 131 - 166
  • [23] FINITE VOLUME SCHEME FOR DIFFUSION PROBLEMS ON GENERAL MESHES APPLYING MONOTONY CONSTRAINTS
    Angelini, O.
    Chavant, C.
    Chenier, E.
    Eymard, R.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 47 (06) : 4193 - 4213
  • [24] A quadratic finite volume element method for parabolic problems on quadrilateral meshes
    Yang, Min
    Liu, Jiangguo
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2011, 31 (03) : 1038 - 1061
  • [25] The hybrid Wilson finite volume method for elliptic problems on quadrilateral meshes
    Zhang, Yuanyuan
    Yang, Min
    Chen, Chuanjun
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2019, 45 (01) : 429 - 452
  • [26] The hybrid Wilson finite volume method for elliptic problems on quadrilateral meshes
    Yuanyuan Zhang
    Min Yang
    Chuanjun Chen
    Advances in Computational Mathematics, 2019, 45 : 429 - 452
  • [27] Benchmark Session: The 2D Discrete Duality Finite Volume Method
    Boyer, Franck
    Krell, Stella
    Nabet, Flore
    FINITE VOLUMES FOR COMPLEX APPLICATIONS VIII-METHODS AND THEORETICAL ASPECTS, FVCA 8, 2017, 199 : 163 - 180
  • [28] A monotone nonlinear finite volume method for approximating diffusion operators on general meshes
    Camier, Jean-Sylvain
    Hermeline, Francois
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2016, 107 (06) : 496 - 519
  • [29] A finite volume method for the approximation of convection-diffusion equations on general meshes
    Hermeline, F.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2012, 91 (12) : 1331 - 1357
  • [30] Well modeling in the multiscale finite volume method for subsurface flow simulation
    Wolfsteiner, Christian
    Lee, Seong H.
    Tchelepi, Hamdi A.
    MULTISCALE MODELING & SIMULATION, 2006, 5 (03): : 900 - 917