Analysis on general meshes of a discrete duality finite volume method for subsurface flow problems

被引:0
|
作者
A. Njifenjou
H. Donfack
I. Moukouop-Nguena
机构
[1] University of Yaounde I,National Advanced School of Engineering
[2] African Institute of Computer Science,Faculty of Science
[3] University of Yaounde I,undefined
来源
Computational Geosciences | 2013年 / 17卷
关键词
Flow problems; Nonhomogeneous anisotropic media; Discrete duality finite volumes; Stability and error estimates; Numerical tests; 35J65; 65N15; 74S10;
D O I
暂无
中图分类号
学科分类号
摘要
This work presents and analyzes, on unstructured grids, a discrete duality finite volume method (DDFV method for short) for 2D-flow problems in nonhomogeneous anisotropic porous media. The derivation of a symmetric discrete problem is established. The existence and uniqueness of a solution to this discrete problem are shown via the positive definiteness of its associated matrix. Properties of this matrix combined with adequate assumptions on data allow to define a discrete energy norm. Stability and error estimate results are proven with respect to this norm. L2-error estimates follow from a discrete Poincaré inequality and an L ∞ -error estimate is given for a P1-DDFV solution. Numerical tests and comparison with other schemes (especially those from FVCA5 benchmark) are provided.
引用
收藏
页码:391 / 415
页数:24
相关论文
共 50 条
  • [21] A discrete duality finite volume approach to hodge decomposition and div-curl problems on almost arbitrary two-dimensional meshes
    Delcourte, Sarah
    Domelevo, Komla
    Omnes, Pascal
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2007, 45 (03) : 1142 - 1174
  • [22] A numerical stabilization framework for viscoelastic fluid flow using the finite volume method on general unstructured meshes
    Niethammer, M.
    Marschall, H.
    Kunkelmann, C.
    Bothe, D.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2018, 86 (02) : 131 - 166
  • [23] FINITE VOLUME SCHEME FOR DIFFUSION PROBLEMS ON GENERAL MESHES APPLYING MONOTONY CONSTRAINTS
    Angelini, O.
    Chavant, C.
    Chenier, E.
    Eymard, R.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 47 (06) : 4193 - 4213
  • [24] A quadratic finite volume element method for parabolic problems on quadrilateral meshes
    Yang, Min
    Liu, Jiangguo
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2011, 31 (03) : 1038 - 1061
  • [25] The hybrid Wilson finite volume method for elliptic problems on quadrilateral meshes
    Zhang, Yuanyuan
    Yang, Min
    Chen, Chuanjun
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2019, 45 (01) : 429 - 452
  • [26] The hybrid Wilson finite volume method for elliptic problems on quadrilateral meshes
    Yuanyuan Zhang
    Min Yang
    Chuanjun Chen
    [J]. Advances in Computational Mathematics, 2019, 45 : 429 - 452
  • [27] Benchmark Session: The 2D Discrete Duality Finite Volume Method
    Boyer, Franck
    Krell, Stella
    Nabet, Flore
    [J]. FINITE VOLUMES FOR COMPLEX APPLICATIONS VIII-METHODS AND THEORETICAL ASPECTS, FVCA 8, 2017, 199 : 163 - 180
  • [28] A monotone nonlinear finite volume method for approximating diffusion operators on general meshes
    Camier, Jean-Sylvain
    Hermeline, Francois
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2016, 107 (06) : 496 - 519
  • [29] A finite volume method for the approximation of convection-diffusion equations on general meshes
    Hermeline, F.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2012, 91 (12) : 1331 - 1357
  • [30] Well modeling in the multiscale finite volume method for subsurface flow simulation
    Wolfsteiner, Christian
    Lee, Seong H.
    Tchelepi, Hamdi A.
    [J]. MULTISCALE MODELING & SIMULATION, 2006, 5 (03): : 900 - 917