Analysis on general meshes of a discrete duality finite volume method for subsurface flow problems

被引:0
|
作者
A. Njifenjou
H. Donfack
I. Moukouop-Nguena
机构
[1] University of Yaounde I,National Advanced School of Engineering
[2] African Institute of Computer Science,Faculty of Science
[3] University of Yaounde I,undefined
来源
Computational Geosciences | 2013年 / 17卷
关键词
Flow problems; Nonhomogeneous anisotropic media; Discrete duality finite volumes; Stability and error estimates; Numerical tests; 35J65; 65N15; 74S10;
D O I
暂无
中图分类号
学科分类号
摘要
This work presents and analyzes, on unstructured grids, a discrete duality finite volume method (DDFV method for short) for 2D-flow problems in nonhomogeneous anisotropic porous media. The derivation of a symmetric discrete problem is established. The existence and uniqueness of a solution to this discrete problem are shown via the positive definiteness of its associated matrix. Properties of this matrix combined with adequate assumptions on data allow to define a discrete energy norm. Stability and error estimate results are proven with respect to this norm. L2-error estimates follow from a discrete Poincaré inequality and an L ∞ -error estimate is given for a P1-DDFV solution. Numerical tests and comparison with other schemes (especially those from FVCA5 benchmark) are provided.
引用
收藏
页码:391 / 415
页数:24
相关论文
共 50 条