Generally covariant geometric momentum, gauge potential and a Dirac fermion on a two-dimensional sphere

被引:0
|
作者
Q. H. Liu
Z. Li
X. Y. Zhou
Z. Q. Yang
W. K. Du
机构
[1] Hunan University,School for Theoretical Physics, College of Physics and Electronics
[2] Hunan Normal University,Synergetic Innovation Center for Quantum Effects and Applications (SICQEA)
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
For a particle that is constrained on an (N-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N-1$$\end{document})-dimensional (N≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ge 2$$\end{document}) curved surface ΣN-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Sigma ^{N-1}$$\end{document}, the Cartesian components of its momentum in N-dimensional flat space are believed to offer a proper form of momentum for the particle on the surface, which is called the geometric momentum as it depends on the mean curvature. Once the momentum becomes generally covariant as to be applicable to spin particles on the surface, the spin connection part in it can be interpreted as a gauge potential. The principal findings are twofold. The first is a general framework of quantum conditions for a spin particle on the hypersurface ΣN-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Sigma ^{N-1}$$\end{document}, and the generalized angular momentum is defined on hypersphere SN-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S^{N-1}$$\end{document} as one consequence of the generally covariant geometric momentum. The second is devoted to a study of a Dirac fermion on a two-dimensional sphere and we show that there is the generalized angular momentum whose three cartesian components form the su(2) algebra, demonstrated to be of geometric origin but obtained before by consideration of dynamics of the particle. Moreover, we show that there is no curvature-induced geometric potential for the spin half particle.
引用
收藏
相关论文
共 50 条
  • [41] On maps of the two-dimensional sphere
    Shchepin, EV
    RUSSIAN MATHEMATICAL SURVEYS, 2003, 58 (06) : 1218 - 1219
  • [42] Hourglass Fermion in Two-Dimensional Material
    Wang, Z. F.
    Liu, Bing
    Zhu, Wei
    PHYSICAL REVIEW LETTERS, 2019, 123 (12)
  • [43] Two-dimensional turbulence on a sphere
    Lindborg, Erik
    Nordmark, Arne
    JOURNAL OF FLUID MECHANICS, 2022, 933
  • [44] Two-dimensional skyrmions on the sphere
    Scoccola, NN
    Bes, DR
    JOURNAL OF HIGH ENERGY PHYSICS, 1998, (09):
  • [45] Two-Dimensional Boson–Fermion Model
    I. Grosu
    C. Blaga
    M. Crisan
    Journal of Superconductivity, 2000, 13 : 459 - 462
  • [46] Introducing a Geometric Potential Theory for two-dimensional steady flows
    Dimitriou, Ioannis
    JOURNAL OF ENGINEERING MATHEMATICS, 2009, 63 (01) : 1 - 15
  • [47] Introducing a Geometric Potential Theory for two-dimensional steady flows
    Ioannis Dimitriou
    Journal of Engineering Mathematics, 2009, 63 : 1 - 15
  • [48] Klein Paradox of Two-Dimensional Dirac Electrons in Circular Well Potential
    黄海
    付星球
    韩榕生
    Communications in Theoretical Physics, 2012, 58 (08) : 205 - 208
  • [49] Scattering of two-dimensional massless Dirac electrons by a circular potential barrier
    Wu, Jhih-Sheng
    Fogler, Michael M.
    PHYSICAL REVIEW B, 2014, 90 (23)
  • [50] Applications of the potential algebras of the two-dimensional Dirac-like operators
    Jakubsky, Vit
    ANNALS OF PHYSICS, 2013, 331 : 216 - 235