Generally covariant geometric momentum, gauge potential and a Dirac fermion on a two-dimensional sphere

被引:0
|
作者
Q. H. Liu
Z. Li
X. Y. Zhou
Z. Q. Yang
W. K. Du
机构
[1] Hunan University,School for Theoretical Physics, College of Physics and Electronics
[2] Hunan Normal University,Synergetic Innovation Center for Quantum Effects and Applications (SICQEA)
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
For a particle that is constrained on an (N-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N-1$$\end{document})-dimensional (N≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ge 2$$\end{document}) curved surface ΣN-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Sigma ^{N-1}$$\end{document}, the Cartesian components of its momentum in N-dimensional flat space are believed to offer a proper form of momentum for the particle on the surface, which is called the geometric momentum as it depends on the mean curvature. Once the momentum becomes generally covariant as to be applicable to spin particles on the surface, the spin connection part in it can be interpreted as a gauge potential. The principal findings are twofold. The first is a general framework of quantum conditions for a spin particle on the hypersurface ΣN-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Sigma ^{N-1}$$\end{document}, and the generalized angular momentum is defined on hypersphere SN-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S^{N-1}$$\end{document} as one consequence of the generally covariant geometric momentum. The second is devoted to a study of a Dirac fermion on a two-dimensional sphere and we show that there is the generalized angular momentum whose three cartesian components form the su(2) algebra, demonstrated to be of geometric origin but obtained before by consideration of dynamics of the particle. Moreover, we show that there is no curvature-induced geometric potential for the spin half particle.
引用
收藏
相关论文
共 50 条
  • [31] Two-dimensional model of dynamical fermion mass generation in strongly coupled gauge theories
    Franzki, W
    Jersak, J
    Welters, R
    PHYSICAL REVIEW D, 1996, 54 (12) : 7741 - 7750
  • [32] TWO-DIMENSIONAL ANGULAR-MOMENTUM AND FERMION IN THE FIELD OF MAGNETIC-FLUX-TUBE
    HOU, BY
    HOU, BY
    WANG, WX
    YAN, JH
    COMMUNICATIONS IN THEORETICAL PHYSICS, 1987, 7 (01) : 49 - 69
  • [33] Structural aspects of the fermion-boson mapping in two-dimensional gauge and anomalous gauge theories with massive fermions
    Belvedere, LV
    Dutra, AD
    Natividade, CP
    de Queiroz, AF
    ANNALS OF PHYSICS, 2002, 296 (01) : 98 - 127
  • [34] Two-dimensional Tunable Dirac/Weyl Semimetal in Non-Abelian Gauge Field
    Yaowu Guo
    Zhi Lin
    Jia-Qiang Zhao
    Jie Lou
    Yan Chen
    Scientific Reports, 9
  • [35] Two-dimensional Tunable Dirac/Weyl Semimetal in Non-Abelian Gauge Field
    Guo, Yaowu
    Lin, Zhi
    Zhao, Jia-Qiang
    Lou, Jie
    Chen, Yan
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [37] NON-COVARIANT EFFECTS IN THE PERTURBATION-THEORY OF TWO-DIMENSIONAL GAUGE-THEORIES
    HAGEN, CR
    SINGH, LPS
    PHYSICAL REVIEW D, 1980, 21 (06) : 1620 - 1624
  • [38] Observation of possible nonlinear anomalous Hall effect in organic two-dimensional Dirac fermion system
    Kiswandhi, Andhika
    Osada, Toshihito
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2022, 34 (10)
  • [39] FERMION CURRENTS IN TWO-DIMENSIONAL MODELS
    SCHAPOSNIK, FA
    ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1985, 28 (01): : 127 - 131
  • [40] Two-Dimensional Flow on the Sphere
    Salmon, Rick
    Pizzo, Nick
    ATMOSPHERE, 2023, 14 (04)