Generally covariant geometric momentum, gauge potential and a Dirac fermion on a two-dimensional sphere

被引:0
|
作者
Q. H. Liu
Z. Li
X. Y. Zhou
Z. Q. Yang
W. K. Du
机构
[1] Hunan University,School for Theoretical Physics, College of Physics and Electronics
[2] Hunan Normal University,Synergetic Innovation Center for Quantum Effects and Applications (SICQEA)
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
For a particle that is constrained on an (N-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N-1$$\end{document})-dimensional (N≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ge 2$$\end{document}) curved surface ΣN-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Sigma ^{N-1}$$\end{document}, the Cartesian components of its momentum in N-dimensional flat space are believed to offer a proper form of momentum for the particle on the surface, which is called the geometric momentum as it depends on the mean curvature. Once the momentum becomes generally covariant as to be applicable to spin particles on the surface, the spin connection part in it can be interpreted as a gauge potential. The principal findings are twofold. The first is a general framework of quantum conditions for a spin particle on the hypersurface ΣN-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Sigma ^{N-1}$$\end{document}, and the generalized angular momentum is defined on hypersphere SN-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S^{N-1}$$\end{document} as one consequence of the generally covariant geometric momentum. The second is devoted to a study of a Dirac fermion on a two-dimensional sphere and we show that there is the generalized angular momentum whose three cartesian components form the su(2) algebra, demonstrated to be of geometric origin but obtained before by consideration of dynamics of the particle. Moreover, we show that there is no curvature-induced geometric potential for the spin half particle.
引用
收藏
相关论文
共 50 条
  • [11] Transformation Between Eigenfunctions of Three Components of Geometric Momentum on Two-Dimensional Sphere
    Sun Hao-Ran
    Xun Da-Mao
    Tang Liang-Hui
    Liu Quan-Hui
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2012, 58 (01) : 31 - 33
  • [12] Infrared structure of two-dimensional covariant gauge QCD
    Gogohia, V
    PHYSICS LETTERS B, 2002, 531 (3-4) : 321 - 330
  • [14] Fermion dispersion renormalization in a two-dimensional semi-Dirac semimetal
    Zhu, Hao-Fu
    Pan, Xiao-Yin
    Liu, Guo-Zhu
    PHYSICAL REVIEW B, 2022, 105 (08)
  • [15] A general solution for the quark propagator in two-dimensional covariant gauge QCD
    Gogohia, V
    Kluge, G
    de Usera, IV
    PHYSICS LETTERS B, 2003, 576 (1-2) : 243 - 252
  • [16] Topological Proximity-Induced Dirac Fermion in Two-Dimensional Antimonene
    Su, Shu Hsuan
    Chuang, Pei-Yu
    Chen, Hsin-Yu
    Weng, Shih-Chang
    Chen, Wei-Chuan
    Tsuei, Ku-Ding
    Lee, Chao-Kuei
    Yu, Shih-Hsun
    Chou, Mitch M-C
    Tu, Li-Wei
    Jeng, Horng-Tay
    Tu, Chien-Ming
    Luo, Chih-Wei
    Cheng, Cheng-Maw
    Chang, Tay-Rong
    Huang, Jung-Chun Andrew
    ACS NANO, 2021, 15 (09) : 15085 - 15095
  • [17] Renormalization group approach to two-dimensional Coulomb interacting Dirac fermions with random gauge potential
    Vafek, Oskar
    Case, Matthew J.
    PHYSICAL REVIEW B, 2008, 77 (03):
  • [18] Quantization of a generally covariant gauge system with two super Hamiltonian constraints
    Ferraro, R
    Sforza, DM
    PHYSICAL REVIEW D, 2001, 64 (02):
  • [19] Quartic fermion self-interactions in two-dimensional gauge theories
    Dutra, AS
    Natividade, CP
    Boschi, H
    Amaral, RLPG
    Belvedere, LV
    PHYSICAL REVIEW D, 1997, 55 (08): : 4931 - 4939
  • [20] Theory of in-plane magnetoresistance in two-dimensional massless Dirac fermion system
    Morinari, Takao
    Tohyama, Takami
    PHYSICAL REVIEW B, 2010, 82 (16):