Generally covariant geometric momentum, gauge potential and a Dirac fermion on a two-dimensional sphere

被引:0
|
作者
Q. H. Liu
Z. Li
X. Y. Zhou
Z. Q. Yang
W. K. Du
机构
[1] Hunan University,School for Theoretical Physics, College of Physics and Electronics
[2] Hunan Normal University,Synergetic Innovation Center for Quantum Effects and Applications (SICQEA)
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
For a particle that is constrained on an (N-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N-1$$\end{document})-dimensional (N≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ge 2$$\end{document}) curved surface ΣN-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Sigma ^{N-1}$$\end{document}, the Cartesian components of its momentum in N-dimensional flat space are believed to offer a proper form of momentum for the particle on the surface, which is called the geometric momentum as it depends on the mean curvature. Once the momentum becomes generally covariant as to be applicable to spin particles on the surface, the spin connection part in it can be interpreted as a gauge potential. The principal findings are twofold. The first is a general framework of quantum conditions for a spin particle on the hypersurface ΣN-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Sigma ^{N-1}$$\end{document}, and the generalized angular momentum is defined on hypersphere SN-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S^{N-1}$$\end{document} as one consequence of the generally covariant geometric momentum. The second is devoted to a study of a Dirac fermion on a two-dimensional sphere and we show that there is the generalized angular momentum whose three cartesian components form the su(2) algebra, demonstrated to be of geometric origin but obtained before by consideration of dynamics of the particle. Moreover, we show that there is no curvature-induced geometric potential for the spin half particle.
引用
收藏
相关论文
共 50 条
  • [1] Generally covariant geometric momentum, gauge potential and a Dirac fermion on a two-dimensional sphere
    Liu, Q. H.
    Li, Z.
    Zhou, X. Y.
    Yang, Z. Q.
    Du, W. K.
    EUROPEAN PHYSICAL JOURNAL C, 2019, 79 (08):
  • [2] No existence of the geometric potential for a Dirac fermion on a two-dimensional curved surface of revolution
    Yang, Z. Q.
    Zhou, X. Y.
    Li, Z.
    Du, W. K.
    Liu, Q. H.
    PHYSICS LETTERS A, 2020, 384 (25)
  • [3] GEOMETRIC MOMENTUM IN THE MONGE PARAMETRIZATION OF TWO-DIMENSIONAL SPHERE
    Xun, D. M.
    Liu, Q. H.
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2013, 10 (03)
  • [4] Geometric momentum: The proper momentum for a free particle on a two-dimensional sphere
    Liu, Q. H.
    Tang, L. H.
    Xun, D. M.
    PHYSICAL REVIEW A, 2011, 84 (04):
  • [5] Two-dimensional Dirac fermion in presence of an asymmetric vector potential
    Ishkhanyan, A.
    Jakubsky, V.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2018, 51 (49)
  • [6] Two-dimensional QCD in the covariant gauge
    Gogokhia, V
    Kluge, G
    PHYSICAL REVIEW D, 2002, 66 (05)
  • [7] A two-dimensional Dirac fermion microscope
    Peter Bøggild
    José M. Caridad
    Christoph Stampfer
    Gaetano Calogero
    Nick Rübner Papior
    Mads Brandbyge
    Nature Communications, 8
  • [8] A two-dimensional Dirac fermion microscope
    Boggild, Peter
    Caridad, Jose M.
    Stampfer, Christoph
    Calogero, Gaetano
    Papior, Nick Rubner
    Brandbyge, Mads
    NATURE COMMUNICATIONS, 2017, 8 : 15783
  • [9] ON RELATION BETWEEN GEOMETRIC MOMENTUM AND ANNIHILATION OPERATORS ON A TWO-DIMENSIONAL SPHERE
    Liu, Q. H.
    Shen, Y.
    Xun, D. M.
    Wang, X.
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2013, 10 (06)
  • [10] Transformation Between Eigenfunctions of Three Components of Geometric Momentum on Two-Dimensional Sphere
    孙浩然
    寻大毛
    唐良辉
    刘全慧
    Communications in Theoretical Physics, 2012, 58 (07) : 31 - 33