Restrained domination in cubic graphs

被引:0
|
作者
Johannes H. Hattingh
Ernst J. Joubert
机构
[1] Georgia State University,Department of Mathematics and Statistics
[2] University of Johannesburg,Department of Mathematics
来源
Journal of Combinatorial Optimization | 2011年 / 22卷
关键词
Graph; Cubic graph; Domination; Restrained domination; Upper bound; Lower bound;
D O I
暂无
中图分类号
学科分类号
摘要
Let G=(V,E) be a graph. A set S⊆V is a restrained dominating set if every vertex in V−S is adjacent to a vertex in S and to a vertex in V−S. The restrained domination number of G, denoted γr(G), is the smallest cardinality of a restrained dominating set of G. A graph G is said to be cubic if every vertex has degree three. In this paper, we study restrained domination in cubic graphs. We show that if G is a cubic graph of order n, then \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\gamma_{r}(G)\geq \frac{n}{4}$\end{document} , and characterize the extremal graphs achieving this lower bound. Furthermore, we show that if G is a cubic graph of order n, then \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\gamma _{r}(G)\leq \frac{5n}{11}.$\end{document} Lastly, we show that if G is a claw-free cubic graph, then γr(G)=γ(G).
引用
收藏
页码:166 / 179
页数:13
相关论文
共 50 条
  • [41] Total Domination Versus Domination in Cubic Graphs
    Cyman, Joanna
    Dettlaff, Magda
    Henning, Michael A.
    Lemanska, Magdalena
    Raczek, Joanna
    GRAPHS AND COMBINATORICS, 2018, 34 (01) : 261 - 276
  • [42] The domination parameters of cubic graphs
    Zverovich, IE
    Zverovich, VE
    GRAPHS AND COMBINATORICS, 2005, 21 (02) : 277 - 288
  • [43] On domination in connected cubic graphs
    Kostochka, AV
    Stodolsky, BY
    DISCRETE MATHEMATICS, 2005, 304 (1-3) : 45 - 50
  • [44] Independent Domination in Cubic Graphs
    Dorbec, Paul
    Henning, Michael A.
    Montassier, Mickael
    Southey, Justin
    JOURNAL OF GRAPH THEORY, 2015, 80 (04) : 329 - 349
  • [45] Domination and irredundance in cubic graphs
    Cockayne, EJ
    Mynhardt, CM
    DISCRETE MATHEMATICS, 1997, 167 : 205 - 214
  • [46] The Domination Parameters of Cubic Graphs
    Igor E. Zverovich
    Vadim E. Zverovich
    Graphs and Combinatorics, 2005, 21 : 277 - 288
  • [47] Restrained domination polynomial of join and corona of graphs
    Velmurugan, S.
    Kala, R.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2023, 15 (05)
  • [48] RESTRAINED TOTAL EDGE DOMINATION IN THE JOIN OF GRAPHS
    Paspasan, Mohammad Nur S.
    Canoy, Sergio R., Jr.
    ADVANCES AND APPLICATIONS IN DISCRETE MATHEMATICS, 2020, 23 (01): : 1 - 12
  • [49] k-tuple restrained domination in graphs
    Henning, Michael A.
    Kazemi, Adel P.
    QUAESTIONES MATHEMATICAE, 2021, 44 (08) : 1023 - 1036
  • [50] RESTRAINED STRICTLY LOCATING-DOMINATION IN GRAPHS
    Espinola, Stephanie O.
    ADVANCES AND APPLICATIONS IN DISCRETE MATHEMATICS, 2022, 31 : 87 - 100