Restrained domination in cubic graphs

被引:0
|
作者
Johannes H. Hattingh
Ernst J. Joubert
机构
[1] Georgia State University,Department of Mathematics and Statistics
[2] University of Johannesburg,Department of Mathematics
来源
Journal of Combinatorial Optimization | 2011年 / 22卷
关键词
Graph; Cubic graph; Domination; Restrained domination; Upper bound; Lower bound;
D O I
暂无
中图分类号
学科分类号
摘要
Let G=(V,E) be a graph. A set S⊆V is a restrained dominating set if every vertex in V−S is adjacent to a vertex in S and to a vertex in V−S. The restrained domination number of G, denoted γr(G), is the smallest cardinality of a restrained dominating set of G. A graph G is said to be cubic if every vertex has degree three. In this paper, we study restrained domination in cubic graphs. We show that if G is a cubic graph of order n, then \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\gamma_{r}(G)\geq \frac{n}{4}$\end{document} , and characterize the extremal graphs achieving this lower bound. Furthermore, we show that if G is a cubic graph of order n, then \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\gamma _{r}(G)\leq \frac{5n}{11}.$\end{document} Lastly, we show that if G is a claw-free cubic graph, then γr(G)=γ(G).
引用
收藏
页码:166 / 179
页数:13
相关论文
共 50 条
  • [21] RESTRAINED ROMAN DOMINATION IN GRAPHS
    Pushpam, P. Roushini Leely
    Padmapriea, S.
    TRANSACTIONS ON COMBINATORICS, 2015, 4 (01) : 1 - 17
  • [22] Restrained geodetic domination in graphs
    Mulloor, John Joy
    Sangeetha, V.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2020, 12 (06)
  • [23] Total restrained domination in graphs
    Chen, Xing
    Liu, Juan
    Meng, Jixiang
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (08) : 2892 - 2898
  • [24] On total restrained domination in graphs
    Ma, DX
    Chen, XG
    Sun, L
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2005, 55 (01) : 165 - 173
  • [25] On total restrained domination in graphs
    De-Xiang Ma
    Xue-Gang Chen
    Liang Sun
    Czechoslovak Mathematical Journal, 2005, 55 : 165 - 173
  • [26] Nordhaus-Gaddum results for restrained domination and total restrained domination in graphs
    Hattingh, Johannes H.
    Jonck, Elizabeth
    Joubert, Ernst J.
    Plummer, Andrew R.
    DISCRETE MATHEMATICS, 2008, 308 (07) : 1080 - 1087
  • [27] On Roman, Global and Restrained Domination in Graphs
    Zverovich, V.
    Poghosyan, A.
    GRAPHS AND COMBINATORICS, 2011, 27 (05) : 755 - 768
  • [28] Restrained-Isolate Domination in Graphs
    Arriola, Benjier H.
    2016 12TH INTERNATIONAL CONFERENCE ON MATHEMATICS, STATISTICS, AND THEIR APPLICATIONS (ICMSA), 2016, : 11 - 15
  • [29] On Restrained Strong Resolving Domination in Graphs
    Sumaoy, Helyn C.
    Rara, Helen M.
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2021, 14 (04): : 1367 - 1378
  • [30] The Restrained Double Roman Domination in Graphs
    Xi, Changqing
    Yue, Jun
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2023, 46 (01)