Restrained domination in cubic graphs

被引:0
|
作者
Johannes H. Hattingh
Ernst J. Joubert
机构
[1] Georgia State University,Department of Mathematics and Statistics
[2] University of Johannesburg,Department of Mathematics
来源
Journal of Combinatorial Optimization | 2011年 / 22卷
关键词
Graph; Cubic graph; Domination; Restrained domination; Upper bound; Lower bound;
D O I
暂无
中图分类号
学科分类号
摘要
Let G=(V,E) be a graph. A set S⊆V is a restrained dominating set if every vertex in V−S is adjacent to a vertex in S and to a vertex in V−S. The restrained domination number of G, denoted γr(G), is the smallest cardinality of a restrained dominating set of G. A graph G is said to be cubic if every vertex has degree three. In this paper, we study restrained domination in cubic graphs. We show that if G is a cubic graph of order n, then \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\gamma_{r}(G)\geq \frac{n}{4}$\end{document} , and characterize the extremal graphs achieving this lower bound. Furthermore, we show that if G is a cubic graph of order n, then \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\gamma _{r}(G)\leq \frac{5n}{11}.$\end{document} Lastly, we show that if G is a claw-free cubic graph, then γr(G)=γ(G).
引用
收藏
页码:166 / 179
页数:13
相关论文
共 50 条
  • [31] Graphs with large restrained domination number
    Henning, MA
    DISCRETE MATHEMATICS, 1999, 197 (1-3) : 415 - 429
  • [32] Rainbow restrained domination numbers in graphs
    Amjadi, J.
    Sheikholeslami, S. M.
    Volkmann, L.
    ARS COMBINATORIA, 2016, 124 : 3 - 19
  • [33] The Restrained Double Roman Domination in Graphs
    Changqing Xi
    Jun Yue
    Bulletin of the Malaysian Mathematical Sciences Society, 2023, 46
  • [34] Global restrained Roman domination in graphs
    Alishahi, Morteza
    Mojdeh, Doost Ali
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2023,
  • [35] On Roman, Global and Restrained Domination in Graphs
    V. Zverovich
    A. Poghosyan
    Graphs and Combinatorics, 2011, 27 : 755 - 768
  • [36] Total restrained domination in unicyclic graphs
    Chen, Xing
    Jiang, Yongsheng
    Xie, Dongyang
    Wang, Yazhen
    ARS COMBINATORIA, 2020, 148 : 149 - 166
  • [37] Restrained double Italian domination in graphs
    Volkmann, Lutz
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2021, : 1 - 11
  • [38] Total restrained domination in unicyclic graphs
    Hattingh, Johannes H.
    Joubert, Ernst J.
    Jonck, Elizabeth
    Plummer, Andrew R.
    UTILITAS MATHEMATICA, 2010, 82 : 81 - 95
  • [39] Total Domination Versus Domination in Cubic Graphs
    Joanna Cyman
    Magda Dettlaff
    Michael A. Henning
    Magdalena Lemańska
    Joanna Raczek
    Graphs and Combinatorics, 2018, 34 : 261 - 276
  • [40] Domination versus independent domination in cubic graphs
    Southey, Justin
    Henning, Michael A.
    DISCRETE MATHEMATICS, 2013, 313 (11) : 1212 - 1220