Restrained domination in cubic graphs

被引:0
|
作者
Johannes H. Hattingh
Ernst J. Joubert
机构
[1] Georgia State University,Department of Mathematics and Statistics
[2] University of Johannesburg,Department of Mathematics
来源
关键词
Graph; Cubic graph; Domination; Restrained domination; Upper bound; Lower bound;
D O I
暂无
中图分类号
学科分类号
摘要
Let G=(V,E) be a graph. A set S⊆V is a restrained dominating set if every vertex in V−S is adjacent to a vertex in S and to a vertex in V−S. The restrained domination number of G, denoted γr(G), is the smallest cardinality of a restrained dominating set of G. A graph G is said to be cubic if every vertex has degree three. In this paper, we study restrained domination in cubic graphs. We show that if G is a cubic graph of order n, then \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\gamma_{r}(G)\geq \frac{n}{4}$\end{document} , and characterize the extremal graphs achieving this lower bound. Furthermore, we show that if G is a cubic graph of order n, then \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\gamma _{r}(G)\leq \frac{5n}{11}.$\end{document} Lastly, we show that if G is a claw-free cubic graph, then γr(G)=γ(G).
引用
收藏
页码:166 / 179
页数:13
相关论文
共 50 条
  • [1] Restrained domination in cubic graphs
    Hattingh, Johannes H.
    Joubert, Ernst J.
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2011, 22 (02) : 166 - 179
  • [2] Total Restrained Domination in Cubic Graphs
    Hongxing Jiang
    Liying Kang
    Erfang Shan
    Graphs and Combinatorics, 2009, 25 : 341 - 350
  • [3] Total Restrained Domination in Cubic Graphs
    Jiang, Hongxing
    Kang, Liying
    Shan, Erfang
    GRAPHS AND COMBINATORICS, 2009, 25 (03) : 341 - 350
  • [4] Remarks on restrained domination and total restrained domination in graphs
    Zelinka, B
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2005, 55 (02) : 393 - 396
  • [5] Remarks on restrained domination and total restrained domination in graphs
    Bohdan Zelinka
    Czechoslovak Mathematical Journal, 2005, 55 : 393 - 396
  • [6] Restrained domination in graphs
    Domke, GS
    Hattingh, JH
    Hedetniemi, ST
    Laskar, RC
    Markus, LR
    DISCRETE MATHEMATICS, 1999, 203 (1-3) : 61 - 69
  • [7] Restrained domination in graphs
    Discrete Math, 1-3 (61-69):
  • [8] An Improved Upper Bound on the Total Restrained Domination Number in Cubic Graphs
    Justin Southey
    Michael A. Henning
    Graphs and Combinatorics, 2012, 28 : 547 - 554
  • [9] An Improved Upper Bound on the Total Restrained Domination Number in Cubic Graphs
    Southey, Justin
    Henning, Michael A.
    GRAPHS AND COMBINATORICS, 2012, 28 (04) : 547 - 554
  • [10] Best possible upper bounds on the restrained domination number of cubic graphs
    Bresar, Bostjan
    Henning, Michael A.
    JOURNAL OF GRAPH THEORY, 2024, 106 (04) : 763 - 815