Non-Commutative Carathéodory Interpolation

被引:0
|
作者
Sriram Balasubramanian
机构
[1] University of Florida,Department of Mathematics
来源
Integral Equations and Operator Theory | 2010年 / 68卷
关键词
Primary 47A57; 47L30; Secondary 47A13; Interpolation; Carathéodory; Carathéodory–Fejér; abstract operator algebra; BRS; matrix convex set; formal power series;
D O I
暂无
中图分类号
学科分类号
摘要
We prove a Carathéodory–Fejér type interpolation theorem for certain matrix convex sets in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{C}^d}$$\end{document} using the Blecher–Ruan–Sinclair characterization of abstract operator algebras. Our results generalize the work of Dmitry S. Kalyuzhnyĭ-Verbovetzkiĭ for the d-dimensional non-commutative polydisc.
引用
收藏
页码:529 / 550
页数:21
相关论文
共 50 条
  • [41] Caratheodory interpolation on the non-commutative polydisk (vol 229, pg 241, 2005)
    Kaliuzhnyi-Verbovetskyi, Dmitry S.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 258 (03) : 1066 - 1067
  • [42] Carathéodory Convergence and Harmonic Measure
    Ilia Binder
    Cristobal Rojas
    Michael Yampolsky
    Potential Analysis, 2019, 51 : 499 - 509
  • [43] On the Carathéodory Number for Strong Convexity
    Vuong Bui
    Roman Karasev
    Discrete & Computational Geometry, 2021, 65 : 680 - 692
  • [44] On maximal commutative subrings of non-commutative rings
    Karamzadeh, O. A. S.
    Nazari, N.
    COMMUNICATIONS IN ALGEBRA, 2018, 46 (12) : 5083 - 5115
  • [45] Non-commutative Grobner bases for commutative algebras
    Eisenbud, D
    Peeva, I
    Sturmfels, B
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (03) : 687 - 691
  • [46] Schur Parameters and the Carathéodory Class
    Ming Li
    Toshiyuki Sugawa
    Results in Mathematics, 2019, 74
  • [47] Nonlinear evolutions with Carathéodory forcing
    Dieter Bothe
    Journal of Evolution Equations, 2003, 3 : 375 - 394
  • [48] A Logical Framework with Commutative and Non-commutative Subexponentials
    Kanovich, Max
    Kuznetsov, Stepan
    Nigam, Vivek
    Scedrov, Andre
    AUTOMATED REASONING, IJCAR 2018, 2018, 10900 : 228 - 245
  • [49] Non-Carathéodory analytic functions with respect to symmetric points
    Breaz, Daniel
    Karthikeyan, Kadhavoor R.
    Umadevi, Elangho
    MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS, 2024, 30 (01) : 266 - 283
  • [50] Non-commutative algebraic geometry and commutative desingularizations
    Le Bruyn, L
    Noncommutative Algebra and Geometry, 2006, 243 : 203 - 252