Non-Commutative Carathéodory Interpolation

被引:0
|
作者
Sriram Balasubramanian
机构
[1] University of Florida,Department of Mathematics
来源
Integral Equations and Operator Theory | 2010年 / 68卷
关键词
Primary 47A57; 47L30; Secondary 47A13; Interpolation; Carathéodory; Carathéodory–Fejér; abstract operator algebra; BRS; matrix convex set; formal power series;
D O I
暂无
中图分类号
学科分类号
摘要
We prove a Carathéodory–Fejér type interpolation theorem for certain matrix convex sets in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{C}^d}$$\end{document} using the Blecher–Ruan–Sinclair characterization of abstract operator algebras. Our results generalize the work of Dmitry S. Kalyuzhnyĭ-Verbovetzkiĭ for the d-dimensional non-commutative polydisc.
引用
收藏
页码:529 / 550
页数:21
相关论文
共 50 条
  • [31] Certain Characterizations of Carathéodory Domains
    Oleksiy Dovgoshey
    Computational Methods and Function Theory, 2006, 5 (2) : 489 - 503
  • [32] Carathéodory’s Theorem in Depth
    Ruy Fabila-Monroy
    Clemens Huemer
    Discrete & Computational Geometry, 2017, 58 : 51 - 66
  • [33] Non-commutative tachyons
    Dasgupta, K
    Rajesh, G
    Mukhi, S
    JOURNAL OF HIGH ENERGY PHYSICS, 2000, (06):
  • [34] NON-COMMUTATIVE PERSPECTIVES
    Effros, Edward
    Hansen, Frank
    ANNALS OF FUNCTIONAL ANALYSIS, 2014, 5 (02): : 74 - 79
  • [35] Non-commutative Pfaffians
    Artamonov, D. V.
    Golubeva, V. A.
    RUSSIAN MATHEMATICAL SURVEYS, 2012, 67 (01) : 175 - 177
  • [36] Nonnegative Polynomials and Their Carath,odory Number
    Naldi, Simone
    DISCRETE & COMPUTATIONAL GEOMETRY, 2014, 51 (03) : 559 - 568
  • [37] Constantin Carathéodory and the axiomatic thermodynamics
    Lionello Pogliani
    Mario N. Berberan-Santos
    Journal of Mathematical Chemistry, 2000, 28 : 313 - 324
  • [38] On non-commutative noetherian local rings, non-commutative geometry and particle physics
    Fahmy, MH
    Fahmy, S
    CHAOS SOLITONS & FRACTALS, 2002, 14 (09) : 1353 - 1359
  • [39] MODULI SPACES OF NON-COMMUTATIVE INSTANTONS: GAUGING AWAY NON-COMMUTATIVE PARAMETERS
    Brain, Simon
    Landi, Giovanni
    QUARTERLY JOURNAL OF MATHEMATICS, 2012, 63 (01): : 41 - 86
  • [40] Non-commutative functions and the non-commutative free Levy-Hincin formula
    Popa, Mihai
    Vinnikov, Victor
    ADVANCES IN MATHEMATICS, 2013, 236 : 131 - 157