We prove a Carathéodory–Fejér type interpolation theorem for certain matrix convex sets in \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbb{C}^d}$$\end{document} using the Blecher–Ruan–Sinclair characterization of abstract operator algebras. Our results generalize the work of Dmitry S. Kalyuzhnyĭ-Verbovetzkiĭ for the d-dimensional non-commutative polydisc.