Non-Commutative Carathéodory Interpolation

被引:0
|
作者
Sriram Balasubramanian
机构
[1] University of Florida,Department of Mathematics
来源
Integral Equations and Operator Theory | 2010年 / 68卷
关键词
Primary 47A57; 47L30; Secondary 47A13; Interpolation; Carathéodory; Carathéodory–Fejér; abstract operator algebra; BRS; matrix convex set; formal power series;
D O I
暂无
中图分类号
学科分类号
摘要
We prove a Carathéodory–Fejér type interpolation theorem for certain matrix convex sets in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{C}^d}$$\end{document} using the Blecher–Ruan–Sinclair characterization of abstract operator algebras. Our results generalize the work of Dmitry S. Kalyuzhnyĭ-Verbovetzkiĭ for the d-dimensional non-commutative polydisc.
引用
收藏
页码:529 / 550
页数:21
相关论文
共 50 条