A shifted sum for the congruent number problem

被引:0
|
作者
Thomas A. Hulse
Chan Ieong Kuan
David Lowry-Duda
Alexander Walker
机构
[1] Boston College,Department of Mathematics
[2] Sun Yat-Sen University,School of Mathematics (Zhuhai)
[3] University of Warwick,University of Warwick Mathematics Instititue
[4] Rutgers University,Department of Mathematics
来源
The Ramanujan Journal | 2020年 / 51卷
关键词
Congruent number problem; Elliptic curves; Shifted convolution sums; Asymptotics; 11N37; 11G05;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce a shifted convolution sum that is parametrized by the squarefree natural number t. The asymptotic growth of this series depends explicitly on whether or not t is a congruent number, an integer that is the area of a rational right triangle. This series presents a new avenue of inquiry for the congruent number problem.
引用
收藏
页码:267 / 274
页数:7
相关论文
共 50 条
  • [1] A shifted sum for the congruent number problem
    Hulse, Thomas A.
    Kuan, Chan Ieong
    Lowry-Duda, David
    Walker, Alexander
    [J]. RAMANUJAN JOURNAL, 2020, 51 (02): : 267 - 274
  • [2] Congruent Number Problem
    Coates, John H.
    [J]. PURE AND APPLIED MATHEMATICS QUARTERLY, 2005, 1 (01) : 14 - 27
  • [3] CONGRUENT NUMBER PROBLEM
    ALTER, R
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1980, 87 (01): : 43 - 45
  • [4] The congruent number problem
    V. Chandrasekar
    [J]. Resonance, 1998, 3 (8) : 33 - 45
  • [5] On a shifted convolution sum problem
    Munshi, Ritabrata
    [J]. JOURNAL OF NUMBER THEORY, 2022, 230 : 225 - 232
  • [6] A GENERALIZATION OF THE CONGRUENT NUMBER PROBLEM
    Rolen, Larry
    [J]. INTERNATIONAL JOURNAL OF NUMBER THEORY, 2011, 7 (08) : 2237 - 2247
  • [7] ON THE CONGRUENT NUMBER PROBLEM OVER INTEGERS OF CYCLIC NUMBER FIELDS
    Zinevicius, Albertas
    [J]. MATHEMATICA SLOVACA, 2016, 66 (03) : 561 - 564
  • [8] THE SIZE OF SELMER GROUPS FOR THE CONGRUENT NUMBER PROBLEM
    HEATHBROWN, DR
    [J]. INVENTIONES MATHEMATICAE, 1993, 111 (01) : 171 - 195
  • [9] GENUS PERIODS, GENUS POINTS AND CONGRUENT NUMBER PROBLEM
    Tian, Ye
    Yuan, Xinyi
    Zhang, Shou-Wu
    [J]. ASIAN JOURNAL OF MATHEMATICS, 2017, 21 (04) : 721 - 774
  • [10] On quantitative aspects of the unit sum number problem
    Fuchs, Clemens
    Tichy, Robert
    Ziegler, Volker
    [J]. ARCHIV DER MATHEMATIK, 2009, 93 (03) : 259 - 268