GENUS PERIODS, GENUS POINTS AND CONGRUENT NUMBER PROBLEM

被引:11
|
作者
Tian, Ye [1 ]
Yuan, Xinyi [2 ]
Zhang, Shou-Wu [3 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Morningside Ctr Math, Beijing 100190, Peoples R China
[2] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
[3] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
基金
美国国家科学基金会;
关键词
Congruent number; Birch and Swinnerton-Dyer conjecture; Tate-Shafarevich group; Heegner point; Selmer group; Gross-Zagier formula; Waldspurger formula; L-function; ELLIPTIC-CURVES; HEEGNER POINTS; SWINNERTON-DYER; DERIVATIVES; CONJECTURE; CHARACTERS; SYMMETRY; FORMULA; GL(2); BIRCH;
D O I
10.4310/AJM.2017.v21.n4.a5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, based on an idea of Tian we establish a new sufficient condition for a positive integer n to be a congruent number in terms of the Legendre symbols for the prime factors of n. Our criterion generalizes previous results of Heegner, Birch-Stephens, Monsky, and Tian, and conjecturally provides a list of positive density of congruent numbers. Our method of proving the criterion is to give formulae for the analytic Tate-Shafarevich number L(n) in terms of the so-called genus periods and genus points. These formulae are derived from the Waldspurger formula and the generalized Gross-Zagier formula of Yuan-Zhang-Zhang.
引用
收藏
页码:721 / 774
页数:54
相关论文
共 50 条
  • [1] Curves of every genus with a prescribed number of rational points
    Anbar, Nurdagul
    Stichtenoth, Henning
    [J]. BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2013, 44 (02): : 173 - 193
  • [2] Curves of every genus with a prescribed number of rational points
    Nurdagül Anbar
    Henning Stichtenoth
    [J]. Bulletin of the Brazilian Mathematical Society, New Series, 2013, 44 : 173 - 193
  • [3] Congruent Number Problem
    Coates, John H.
    [J]. PURE AND APPLIED MATHEMATICS QUARTERLY, 2005, 1 (01) : 14 - 27
  • [4] The congruent number problem
    V. Chandrasekar
    [J]. Resonance, 1998, 3 (8) : 33 - 45
  • [5] CONGRUENT NUMBER PROBLEM
    ALTER, R
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1980, 87 (01): : 43 - 45
  • [6] GENUS FIELD AND GENUS NUMBER IN ALGEBRAIC NUMBER FIELDS
    FURUTA, Y
    [J]. NAGOYA MATHEMATICAL JOURNAL, 1967, 29 (MAR) : 281 - &
  • [7] The probability that the number of points on the Jacobian of a genus 2 curve is prime
    Castryck, Wouter
    Folsom, Amanda
    Hubrechts, Hendrik
    Sutherland, Andrew V.
    [J]. PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2012, 104 : 1235 - 1270
  • [8] Genus-2 curves and Jacobians with a given number of points
    Broeker, Reinier
    Howe, Everett W.
    Lauter, Kristin E.
    Stevenhagen, Peter
    [J]. LMS JOURNAL OF COMPUTATION AND MATHEMATICS, 2015, 18 (01): : 170 - 197
  • [9] INTEGRAL POINTS ON CONGRUENT NUMBER CURVES
    Bennett, Michael A.
    [J]. INTERNATIONAL JOURNAL OF NUMBER THEORY, 2013, 9 (06) : 1619 - 1640
  • [10] INTEGRAL POINTS ON THE CONGRUENT NUMBER CURVE
    Chan, Stephanie
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 375 (09) : 6675 - 6700