A shifted sum for the congruent number problem

被引:0
|
作者
Thomas A. Hulse
Chan Ieong Kuan
David Lowry-Duda
Alexander Walker
机构
[1] Boston College,Department of Mathematics
[2] Sun Yat-Sen University,School of Mathematics (Zhuhai)
[3] University of Warwick,University of Warwick Mathematics Instititue
[4] Rutgers University,Department of Mathematics
来源
The Ramanujan Journal | 2020年 / 51卷
关键词
Congruent number problem; Elliptic curves; Shifted convolution sums; Asymptotics; 11N37; 11G05;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce a shifted convolution sum that is parametrized by the squarefree natural number t. The asymptotic growth of this series depends explicitly on whether or not t is a congruent number, an integer that is the area of a rational right triangle. This series presents a new avenue of inquiry for the congruent number problem.
引用
收藏
页码:267 / 274
页数:7
相关论文
共 50 条
  • [21] COMBINATORIAL PROBLEM INVOLVING SUM OF A FINITE NUMBER OF BOTTLENECKS AS OBJECTIVE
    MATHUR, K
    PURI, MC
    BANSAL, S
    [J]. ASIA-PACIFIC JOURNAL OF OPERATIONAL RESEARCH, 1994, 11 (01) : 31 - 39
  • [22] The average number of integral points on the congruent number curves
    Chan, Stephanie
    [J]. ADVANCES IN MATHEMATICS, 2024, 457
  • [23] On the quantitative unit sum number problem-an application of the subspace theorem
    Filipin, Alan
    Tichy, Robert
    Ziegler, Volker
    [J]. ACTA ARITHMETICA, 2008, 133 (04) : 297 - 308
  • [24] INTEGRAL POINTS ON CONGRUENT NUMBER CURVES
    Bennett, Michael A.
    [J]. INTERNATIONAL JOURNAL OF NUMBER THEORY, 2013, 9 (06) : 1619 - 1640
  • [25] ON THE NUMBER OF DIVISORS OF A NUMBER AND THEIR SUM
    Ewell, John A.
    [J]. JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2006, 6 (01): : 19 - 26
  • [26] The number of congruent simplices in a point set
    Agarwal, PK
    Sharir, M
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2002, 28 (02) : 123 - 150
  • [27] ON CONGRUENT DOMINATION NUMBER OF Cn?Cm
    Vaidya, S. K.
    Vadhel, H. D.
    [J]. TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2023, 13 : 14 - 27
  • [28] Congruent Number Theta Coefficients to 1012
    Hart, William B.
    Tornaria, Gonzalo
    Watkins, Mark
    [J]. ALGORITHMIC NUMBER THEORY, 2010, 6197 : 186 - +
  • [29] INTEGRAL POINTS ON THE CONGRUENT NUMBER CURVE
    Chan, Stephanie
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 375 (09) : 6675 - 6700
  • [30] The Number of Congruent Simplices in a Point Set
    [J]. Discrete & Computational Geometry, 2002, 28 : 123 - 150