ON THE CONGRUENT NUMBER PROBLEM OVER INTEGERS OF CYCLIC NUMBER FIELDS

被引:1
|
作者
Zinevicius, Albertas [1 ,2 ]
机构
[1] Vilnius Univ, Dept Math & Informat, Naugarduko 24, LT-03225 Vilnius, Lithuania
[2] Inst Math & Informat, Akad 4, LT-08663 Vilnius, Lithuania
关键词
congruent numbers; cyclic extensions; rings of integers; prime numbers;
D O I
10.1515/ms-2015-0158
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a cyclic field extension K/Q of degree d and a nonzero rational integer m, we show that the equation mp(2) = x(4) - y(2) has no nontrivial solutions in O-K when p belongs to a subset of rational prime numbers of relative density at least phi(d)/(2d). (C) 2016 Mathematical Institute Slovak Academy of Sciences
引用
收藏
页码:561 / 564
页数:4
相关论文
共 50 条