Analysis of dark current considering trap-assisted tunneling mechanism for InGaAs PIN photodetectors

被引:0
|
作者
Xiaokai Ma
Yongqing Huang
Jiarui Fei
Qingtao Chen
Tao Liu
Kai Liu
Xiaofeng Duan
Xin Yan
Xiaomin Ren
机构
[1] Beijing University of Posts and Telecommunications,State Key Laboratory of Information Photonics and Optical Communications
来源
关键词
Dark current; Photodetectors; Trap-assisted tunneling; Shockley–Read–Hall generation; Critical voltage;
D O I
暂无
中图分类号
学科分类号
摘要
In0.53Ga0.47As PIN photodetectors were fabricated and their dark currents were measured. Based on the analysis of different mechanisms, a complete dark current model considering trap-assisted tunneling (TAT) mechanism under low and intermediate reverse bias is constructed by studying the electric fields and carrier generation-recombination rates. The obtained current–voltage experimental results under dark conditions are in good agreement with our simulation using this complete model. The contribution of each mechanism is investigated, and to evaluate the dominant factor deriving from Shockley–Read–Hall generation or TAT, a critical voltage (Vcri\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_{cri}$$\end{document}) where ITAT=ISRH≈0.5Idark\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_{TAT} = I_{SRH} \approx 0.5I_{dark}$$\end{document} is proposed. In addition, the effects of thickness and doping concentration of absorption layer on Vcri\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_{cri}$$\end{document} are discussed in detail, from which we demonstrate that ITAT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_{TAT}$$\end{document} is the dominant component of dark current for those photodetectors operating under the reverse bias of 5 V if the thickness of absorption layer is less than 1 μm when the doping concentration is 1 × 1015 cm−3, or the doping concentration of absorption layer is more than 7 × 1015 cm−3 when the thickness is 2 μm. The effect of temperature on dark current due to TAT is also analyzed.
引用
收藏
相关论文
共 50 条
  • [31] On the Temperature and Field Dependence of Trap-Assisted Tunneling Current in Ge p+n Junctions
    Simoen, Eddy
    De Stefano, Francesca
    Eneman, Geert
    De Jaeger, Brice
    Claeys, Cor
    Crupi, Felice
    IEEE ELECTRON DEVICE LETTERS, 2009, 30 (05) : 562 - 564
  • [32] Spin-dependent trap-assisted tunneling current in ultra-thin gate dielectrics
    Miura, Y.
    Fujieda, S.
    Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, 2001, 40 (4 B): : 2840 - 2843
  • [33] A closed-form model for thermionic trap-assisted tunneling
    Sathaiya, D. Mahaveer
    Karmalkar, Shreepad
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2008, 55 (02) : 557 - 564
  • [34] Spin-dependent trap-assisted tunneling current in ultra-thin gate dielectrics
    Miura, Y
    Fujieda, S
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 2001, 40 (4B): : 2840 - 2843
  • [35] Trap-assisted tunneling in high permittivity gate dielectric stacks
    Houssa, M
    Tuominen, M
    Naili, M
    Afanas'ev, VV
    Stesmans, A
    Haukka, S
    Heyns, MM
    JOURNAL OF APPLIED PHYSICS, 2000, 87 (12) : 8615 - 8620
  • [36] Calibration of Bulk Trap-Assisted Tunneling and Shockley-Read-Hall Currents and Impact on InGaAs Tunnel-FETs
    Smets, Quentin
    Verhulst, Anne S.
    Simoen, Eddy
    Gundlach, David
    Richter, Curt
    Collaert, Nadine
    Heyns, Marc M.
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2017, 64 (09) : 3615 - 3619
  • [37] Trap-assisted tunneling contributions to subthreshold forward current in InGaN/GaN light-emitting diodes
    Mandurrino, M.
    Goano, M.
    Dominici, S.
    Vallone, M.
    Bertazzi, F.
    Ghione, G.
    Bernabei, M.
    Rovati, L.
    Verzellesi, G.
    Meneghini, M.
    Meneghesso, G.
    Zanoni, E.
    FOURTEENTH INTERNATIONAL CONFERENCE ON SOLID STATE LIGHTING AND LED-BASED ILLUMINATION SYSTEMS, 2015, 9571
  • [38] Trap-assisted tunneling current and quantum efficiency loss in InGaAsSb short wavelength infrared photo detectors
    Li, Nong
    Wang, Guowei
    Jiang, Dongwei
    Zhou, Wenguang
    Chang, Faran
    Lin, Fangqi
    Chen, Weiqiang
    Jiang, Junkai
    Xu, Xueyue
    She, Lifang
    Cui, Suning
    Liu, Bing
    Hao, Hongyue
    Wu, Donghai
    Xu, Yingqiang
    Niu, Zhichuan
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2022, 37 (11)
  • [39] Trap-assisted tunneling as possible carrier escape mechanism in InGaN/GaN light-emitting diodes
    Lu, Boyang
    Hao, Zhibiao
    Luo, Yi
    Sun, Changzheng
    Han, Yanjun
    Xiong, Bing
    Wang, Jian
    Li, Hongtao
    Wang, Lai
    JOURNAL OF APPLIED PHYSICS, 2022, 132 (17)
  • [40] Investigation of trap-assisted tunneling current in InAs/(GaIn)Sb superlattice long-wavelength photodiodes
    Yang, QK
    Fuchs, F
    Schmitz, J
    Pletschen, W
    APPLIED PHYSICS LETTERS, 2002, 81 (25) : 4757 - 4759