Analysis of dark current considering trap-assisted tunneling mechanism for InGaAs PIN photodetectors

被引:0
|
作者
Xiaokai Ma
Yongqing Huang
Jiarui Fei
Qingtao Chen
Tao Liu
Kai Liu
Xiaofeng Duan
Xin Yan
Xiaomin Ren
机构
[1] Beijing University of Posts and Telecommunications,State Key Laboratory of Information Photonics and Optical Communications
来源
关键词
Dark current; Photodetectors; Trap-assisted tunneling; Shockley–Read–Hall generation; Critical voltage;
D O I
暂无
中图分类号
学科分类号
摘要
In0.53Ga0.47As PIN photodetectors were fabricated and their dark currents were measured. Based on the analysis of different mechanisms, a complete dark current model considering trap-assisted tunneling (TAT) mechanism under low and intermediate reverse bias is constructed by studying the electric fields and carrier generation-recombination rates. The obtained current–voltage experimental results under dark conditions are in good agreement with our simulation using this complete model. The contribution of each mechanism is investigated, and to evaluate the dominant factor deriving from Shockley–Read–Hall generation or TAT, a critical voltage (Vcri\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_{cri}$$\end{document}) where ITAT=ISRH≈0.5Idark\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_{TAT} = I_{SRH} \approx 0.5I_{dark}$$\end{document} is proposed. In addition, the effects of thickness and doping concentration of absorption layer on Vcri\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_{cri}$$\end{document} are discussed in detail, from which we demonstrate that ITAT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_{TAT}$$\end{document} is the dominant component of dark current for those photodetectors operating under the reverse bias of 5 V if the thickness of absorption layer is less than 1 μm when the doping concentration is 1 × 1015 cm−3, or the doping concentration of absorption layer is more than 7 × 1015 cm−3 when the thickness is 2 μm. The effect of temperature on dark current due to TAT is also analyzed.
引用
收藏
相关论文
共 50 条
  • [21] Defect-induced trap-assisted tunneling current in GaInNAs grown on GaAs substrate
    Loke, W. K.
    Yoon, S. F.
    Wicaksono, S.
    Tan, K. H.
    Lew, K. L.
    JOURNAL OF APPLIED PHYSICS, 2007, 102 (05)
  • [22] Solution-processed polymer photodetectors with trap-assisted photomultiplication
    HAN ZiHong
    ZHANG Hui
    TIAN QiuShuo
    LI LingLiang
    ZHANG FuJun
    Science China(Physics,Mechanics & Astronomy), 2015, (05) : 94 - 98
  • [23] Defect-induced trap-assisted tunneling current in GaInNAs grown on GaAs substrate
    Loke, W.K.
    Yoon, S.F.
    Wicaksono, S.
    Tan, K.H.
    Lew, K.L.
    Journal of Applied Physics, 2007, 102 (05):
  • [24] Trap-assisted tunneling current of ultrathin InAlN/GaN HEMTs on Si (111) substrate
    Liang, Jingxian
    Lai, Longkun
    Zhou, Zhaokun
    Zhang, Jing
    Zhang, Jie
    Xu, Jin
    Zhang, Yipeng
    Liu, Xinyu
    Luo, Weijun
    SOLID-STATE ELECTRONICS, 2019, 160
  • [25] Trap-assisted tunnelling current in MIM structures
    Racko, Juraj
    Mikolasek, Miroslav
    Granzner, Ralf
    Breza, Juraj
    Donoval, Daniel
    Grmanova, Alena
    Harmatha, Ladislav
    Schwierz, Frank
    Froehlich, Karol
    CENTRAL EUROPEAN JOURNAL OF PHYSICS, 2011, 9 (01): : 230 - 241
  • [26] Exploiting the Correlation Between 1/f Noise-Dark Current in PIN InGaAs Photodetectors
    Li, Chuang
    Liu, Hezhuang
    Wang, Jingyi
    Guo, Daqian
    Chen, Baile
    Wu, Jiang
    IEEE JOURNAL OF QUANTUM ELECTRONICS, 2024, 60 (03) : 1 - 5
  • [27] Trap-Assisted Tunneling in PbS Colloidal Quantum Dots Photodetector
    Yan, Qi
    Deng, Wenjie
    Ma, Xueliang
    Wu, Yi
    Li, Jingzhen
    You, Congya
    Yu, Songlin
    Li, Liya
    Yu, Xuyang
    Wang, Peng
    Zhang, Yongzhe
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2024, 71 (10) : 6085 - 6090
  • [28] A HydroDynamic Model for Trap-Assisted Tunneling Conduction in Ovonic Devices
    Buscemi, F.
    Piccinini, E.
    Vandelli, L.
    Nardi, F.
    Padovani, A.
    Kaczer, B.
    Garbin, D.
    Clima, S.
    Degraeve, R.
    Kar, G. S.
    Tavanti, F.
    Slassi, A.
    Calzolari, A.
    Larcher, L.
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2023, 70 (04) : 1808 - 1814
  • [29] Resistive memory variability: A simplified trap-assisted tunneling model
    Garbin, Daniele
    Vianello, Elisa
    Rafhay, Quentin
    Azzaz, Mourad
    Candelier, Philippe
    DeSalvo, Barbara
    Ghibaudo, Gerard
    Perniola, Luca
    SOLID-STATE ELECTRONICS, 2016, 115 : 126 - 132
  • [30] Compact Modeling of Trap-Assisted Tunneling Current in 3-D NAND Flash Memory
    Jo, Hyungjun
    Shin, Hyungcheol
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2025, 72 (04) : 1745 - 1749