On the adjacent vertex-distinguishing total chromatic numbers of the graphs with Δ (G) = 3

被引:0
|
作者
Haiying Wang
机构
[1] Beijing Institute of Technology,Department of Mathematics
来源
关键词
The adjacent vertex-distinguishing total coloring; The adjacent vertex-distinguishing total chromatic number; Subdivision vertex; Subdivision graph;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G=(V(G),E(G))$$\end{document} be a simple graph and T(G) be the set of vertices and edges of G. Let C be a k-color set. A (proper) total k-coloring f of G is a function \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\!: T(G)\longrightarrow C$$\end{document} such that no adjacent or incident elements of T(G) receive the same color. For any \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u\in V(G)$$\end{document}, denote \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C(u)=\{f(u)\}\cup\{f(uv)|uv\in E(G)\}$$\end{document}. The total k-coloring f of G is called the adjacent vertex-distinguishing if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C(u)\neq C(v)$$\end{document} for any edge \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$uv\in E(G)$$\end{document}. And the smallest number of colors is called the adjacent vertex-distinguishing total chromatic number \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi_{at}(G)$$\end{document} of G. In this paper, we prove that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi_{at}(G)\leq 6$$\end{document} for all connected graphs with maximum degree three. This is a step towards a conjecture on the adjacent vertex-distinguishing total coloring.
引用
收藏
页码:87 / 109
页数:22
相关论文
共 50 条