Vertex-Distinguishing E-Total Colorings of Graphs

被引:11
|
作者
Chen, Xiang'en [1 ]
Zu, Yue [1 ]
Xu, Jin [2 ]
Wang, Zhiwen [3 ]
Yao, Bing [1 ]
机构
[1] NW Normal Univ, Coll Math & Informat Sci, Lanzhou 730070, Peoples R China
[2] Peking Univ, Sch Elect Engn & Comp Sci, Beijing 100871, Peoples R China
[3] Ningxia Univ, Sch Math & Comp Sci, Yinchuan 750021, Peoples R China
基金
中国国家自然科学基金;
关键词
Coloring; E-total coloring; Vertex-distinguishing E-total coloring; Vertex-distinguishing E-total chromatic number; DISTINGUISHING CHROMATIC INDEX; OBSERVABILITY;
D O I
10.1007/s13369-011-0099-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Let G be a simple graph. A total coloring f of G is called an E-total coloring if no two adjacent vertices of G receive the same color, and no edge of G receives the same color as one of its endpoints. For an E-total coloring f of a graph G and any vertex u of G let C f (u) or C(u) denote the set of colors of vertex u and of the edges incident to u. We call C(u) the color set of u. If C(u) not equal C(v) for any two different vertices u and v of V(G) then we say that f is a vertex-distinguishing E-total coloring of G or a VDET coloring of G for short. The minimum number of colors required for a VDET coloring of G is denoted by chi(e)(vl)(G) and is called the VDET chromatic number of G. In this paper, we find the VDET chromatic number for some special families of graphs, such as the path P-n, the cycle C-n, the complete bipartite graphs K-1,K-n and K-2, n the complete graph K-n, and wheels and fans, and we also propose a related conjecture.
引用
收藏
页码:1485 / 1500
页数:16
相关论文
共 50 条
  • [1] Vertex-Distinguishing E-Total Colorings of Graphs
    Xiang’en Chen
    Yue Zu
    Jin Xu
    Zhiwen Wang
    Bing Yao
    [J]. Arabian Journal for Science and Engineering, 2011, 36 : 1485 - 1500
  • [2] Erratum to: Vertex-Distinguishing E-Total Colorings of Graphs
    Xiang’en Chen
    Yue Zu
    Zhongfu Zhang
    [J]. Arabian Journal for Science and Engineering, 2011, 36 (8) : 1643 - 1643
  • [3] Vertex-Distinguishing E-Total Colorings of Complete Bipartite Graphs with One Part Having Five Vertices
    Chen, Xiang’En
    Li, Shiling
    [J]. IAENG International Journal of Applied Mathematics, 2023, 53 (01)
  • [4] Vertex-distinguishing I-total colorings of graphs
    Chen, Xiang'en
    Li, Ze-peng
    [J]. UTILITAS MATHEMATICA, 2014, 95 : 319 - 327
  • [5] Vertex-distinguishing edge colorings of graphs
    Ballister, PN
    Riordan, OM
    Schelp, RH
    [J]. JOURNAL OF GRAPH THEORY, 2003, 42 (02) : 95 - 109
  • [6] On the adjacent vertex-distinguishing total colorings of some cubic graphs
    Feng, Yun
    Lin, Wensong
    [J]. Journal of Combinatorial Mathematics and Combinatorial Computing, 2019, 109 : 185 - 199
  • [7] Gap vertex-distinguishing edge colorings of graphs
    Tahraoui, M. A.
    Duchene, E.
    Kheddouci, H.
    [J]. DISCRETE MATHEMATICS, 2012, 312 (20) : 3011 - 3025
  • [9] Vertex-distinguishing edge colorings of random graphs
    Balister, PN
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2002, 20 (01) : 89 - 97
  • [10] On the vertex-distinguishing proper edge-colorings of graphs
    Bazgan, C
    Harkat-Benhamdine, A
    Li, H
    Wozniak, M
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 1999, 75 (02) : 288 - 301