Vertex-Distinguishing E-Total Colorings of Graphs

被引:11
|
作者
Chen, Xiang'en [1 ]
Zu, Yue [1 ]
Xu, Jin [2 ]
Wang, Zhiwen [3 ]
Yao, Bing [1 ]
机构
[1] NW Normal Univ, Coll Math & Informat Sci, Lanzhou 730070, Peoples R China
[2] Peking Univ, Sch Elect Engn & Comp Sci, Beijing 100871, Peoples R China
[3] Ningxia Univ, Sch Math & Comp Sci, Yinchuan 750021, Peoples R China
基金
中国国家自然科学基金;
关键词
Coloring; E-total coloring; Vertex-distinguishing E-total coloring; Vertex-distinguishing E-total chromatic number; DISTINGUISHING CHROMATIC INDEX; OBSERVABILITY;
D O I
10.1007/s13369-011-0099-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Let G be a simple graph. A total coloring f of G is called an E-total coloring if no two adjacent vertices of G receive the same color, and no edge of G receives the same color as one of its endpoints. For an E-total coloring f of a graph G and any vertex u of G let C f (u) or C(u) denote the set of colors of vertex u and of the edges incident to u. We call C(u) the color set of u. If C(u) not equal C(v) for any two different vertices u and v of V(G) then we say that f is a vertex-distinguishing E-total coloring of G or a VDET coloring of G for short. The minimum number of colors required for a VDET coloring of G is denoted by chi(e)(vl)(G) and is called the VDET chromatic number of G. In this paper, we find the VDET chromatic number for some special families of graphs, such as the path P-n, the cycle C-n, the complete bipartite graphs K-1,K-n and K-2, n the complete graph K-n, and wheels and fans, and we also propose a related conjecture.
引用
收藏
页码:1485 / 1500
页数:16
相关论文
共 50 条
  • [21] Adjacent vertex-distinguishing total colorings of Ks V Kt
    Feng, Yun
    Lin, Wensong
    [J]. Lin, W. (wslin@seu.edu.cn), 1600, Southeast University (29): : 226 - 228
  • [22] Vertex-distinguishing IE-total Colorings of Cycles and Wheels
    CHEN XIANG-EN
    HE WEN-YU
    LI ZE-PENG
    YAO BING
    Du Xian-kun
    [J]. Communications in Mathematical Research, 2014, 30 (03) : 222 - 236
  • [23] Union vertex-distinguishing edge colorings
    Kittipassorn, Teeradej
    Sanyatit, Preechaya
    [J]. DISCRETE MATHEMATICS, 2024, 347 (09)
  • [24] On the vertex-distinguishing proper total colorings of complete p-partite graphs with equipotent parts
    Yang, Fang
    Chen, Xiang-en
    Ma, Chunyan
    [J]. ARS COMBINATORIA, 2017, 134 : 233 - 249
  • [25] On Vertex-Distinguishing Proper Edge Colorings of Graphs Satisfying the Ore Condition
    Chen, Meirun
    Guo, Xiaofeng
    [J]. ARS COMBINATORIA, 2010, 97 : 377 - 382
  • [26] Vertex-distinguishing edge-colorings of 2-regular graphs
    Wittmann, P
    [J]. DISCRETE APPLIED MATHEMATICS, 1997, 79 (1-3) : 265 - 277
  • [27] The Smarandachely Adjacent Vertex Distinguishing E-total Coloring of Some Join Graphs
    Li, Muchun
    Wang, Shuangli
    Wang, Lili
    [J]. SENSORS, MEASUREMENT AND INTELLIGENT MATERIALS II, PTS 1 AND 2, 2014, 475-476 : 379 - 382
  • [28] OPTIMAL ADJACENT VERTEX-DISTINGUISHING EDGE-COLORINGS OF CIRCULANT GRAPHS
    Gravier, Sylvain
    Signargout, Hippolyte
    Slimani, Souad
    [J]. DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2024, 44 (04) : 1341 - 1359
  • [29] A note on the vertex-distinguishing proper total coloring of graphs
    Li, Jingwen
    Wang, Zhiwen
    Zhang, Zhongfu
    Zhu, Enqiang
    Wan, Fei
    Wang, Hongjie
    [J]. ARS COMBINATORIA, 2010, 96 : 421 - 423
  • [30] Incidence adjacent vertex-distinguishing total coloring of graphs
    Institute of Applied Mathematics, Lanzhou Jiaotong University, Lanzhou 730070, China
    不详
    [J]. Proc. - Int. Conf. Comput. Intell. Softw. Eng., CiSE, 1600,