Well-posedness and blow-up for a non-local elliptic–hyperbolic system related to short-pulse equation

被引:0
|
作者
Lianhong Wang
Fengquan Li
机构
[1] Dalian University of Technology,School of Mathematical Sciences
关键词
Elliptic–hyperbolic system; Short-pulse equation; Well-posedness; Blow-up; Weak solution; 35G25; 35L05; 35L65; 35A01; 35A02;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we investigate the non-local elliptic–hyperbolic system related to a short-pulse equation on the line. We first establish the local well-posedness of the problem in Hr(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^r(\mathbb {R})$$\end{document}, r>32\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r>\frac{3}{2}$$\end{document}, by taking advantage of the Kato’s method. Then, we obtain a blow-up criterion for strong solutions and a result of blow-up solution. Finally, the existence of global weak solutions is proved.
引用
收藏
相关论文
共 50 条
  • [1] Well-posedness and blow-up for a non-local elliptic-hyperbolic system related to short-pulse equation
    Wang, Lianhong
    Li, Fengquan
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (05):
  • [2] Local well-posedness and blow-up phenomena of the generalized short pulse equation
    Guo, Yingying
    Yin, Zhaoyang
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (04)
  • [3] A non-local elliptic-hyperbolic system related to the short pulse equation
    Coclite, Giuseppe Maria
    di Ruvo, Lorenzo
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 190
  • [4] Local well-posedness and blow-up for an inhomogeneous nonlinear heat equation
    Alessa, Rasha
    Alshehri, Aisha
    Altamimi, Haya
    Majdoub, Mohamed
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (08) : 5264 - 5272
  • [5] Local well-posedness and blow-up criteria of solutions for a rod equation
    Zhou, Y
    [J]. MATHEMATISCHE NACHRICHTEN, 2005, 278 (14) : 1726 - 1739
  • [6] On the Well-Posedness and Blow-Up for a Semilinear Biparabolic Equation
    Vo Van Au
    Zhou, Yong
    O'Regan, Donal
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2022, 19 (01)
  • [7] On the Well-Posedness and Blow-Up for a Semilinear Biparabolic Equation
    Vo Van Au
    Yong Zhou
    Donal O’Regan
    [J]. Mediterranean Journal of Mathematics, 2022, 19
  • [8] GLOBAL WELL-POSEDNESS AND BLOW-UP FOR THE HARTREE EQUATION
    Yang, Lingyan
    Li, Xiaoguang
    Wu, Yonghong
    Caccetta, Louis
    [J]. ACTA MATHEMATICA SCIENTIA, 2017, 37 (04) : 941 - 948
  • [9] Well-posedness and blow-up properties for the generalized Hartree equation
    Arora, Anudeep Kumar
    Roudenko, Svetlana
    [J]. JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2020, 17 (04) : 727 - 763
  • [10] Local well-posedness for hyperbolic-elliptic Ishimori equation
    Wang, Yuzhao
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (09) : 4625 - 4655