GLOBAL WELL-POSEDNESS AND BLOW-UP FOR THE HARTREE EQUATION

被引:4
|
作者
Yang, Lingyan [1 ]
Li, Xiaoguang [1 ,2 ]
Wu, Yonghong [3 ]
Caccetta, Louis [3 ]
机构
[1] Sichuan Normal Univ, Chengdu 610066, Sichuan, Peoples R China
[2] Chinese Acad Sci, Wuhan Inst Phys & Machemat, Wuhan 430071, Hubei, Peoples R China
[3] Curtin Univ Technol, Dept Math & Stat, Perth, WA 6845, Australia
基金
中国国家自然科学基金;
关键词
Hartree equation; Threshold criteria; blow-up solution; NONLINEAR SCHRODINGER; SCATTERING;
D O I
10.1016/S0252-9602(17)30049-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For 2 < gamma < min{4, n}, we consider the focusing Hartree equation iu(t) Delta u + (vertical bar X vertical bar(-gamma) * vertical bar u vertical bar(2))u = 0, x is an element of R-n. (0.1) Let M[u] and E[u] denote the mass and energy, respectively, of a solution u, and Q be the ground state of - Delta Q + Q = (vertical bar x1 vertical bar(-gamma) * vertical bar Q vertical bar(2))Q. Guo and Wang [Z. Angew. Math. Phy.,2014] established a dichotomy for scattering versus blow-up for the Cauchy problem of (0.1) if M[u](1-sc) E[u](sc) < M[Q](1-sc) E[Q](sc) (s(c) = gamma-2/2V). In this paper, we consider the complementary case M[u](1-sc) E[u](sc) >= M[Q](1-sc) E[Q](sc) and obtain a criteria on blow-up and global existence for the Hartree equation (0.1).
引用
收藏
页码:941 / 948
页数:8
相关论文
共 50 条
  • [1] Well-posedness and blow-up properties for the generalized Hartree equation
    Arora, Anudeep Kumar
    Roudenko, Svetlana
    [J]. JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2020, 17 (04) : 727 - 763
  • [2] On the Well-Posedness and Blow-Up for a Semilinear Biparabolic Equation
    Vo Van Au
    Zhou, Yong
    O'Regan, Donal
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2022, 19 (01)
  • [3] On the Well-Posedness and Blow-Up for a Semilinear Biparabolic Equation
    Vo Van Au
    Yong Zhou
    Donal O’Regan
    [J]. Mediterranean Journal of Mathematics, 2022, 19
  • [4] GLOBAL WELL-POSEDNESS, SCATTERING AND BLOW-UP FOR THE ENERGY-CRITICAL, FOCUSING HARTREE EQUATION IN THE RADIAL CASE
    Miao, Changxing
    Xu, Guixiang
    Zhao, Lifeng
    [J]. COLLOQUIUM MATHEMATICUM, 2009, 114 (02) : 213 - 236
  • [5] Well-posedness, blow-up phenomena, and global solutions for the b-equation
    Escher, Joachim
    Yin, Zhaoyang
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2008, 624 : 51 - 80
  • [6] Global well-posedness, regularity and blow-up for the β-CCF model
    Ferreir, Lucas C. F.
    Moitinho, Valter V. C.
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 344 : 230 - 259
  • [7] Global well-posedness and blow-up on the energy space for the inhomogeneous nonlinear Schrodinger equation
    Farah, Luiz G.
    [J]. JOURNAL OF EVOLUTION EQUATIONS, 2016, 16 (01) : 193 - 208
  • [8] Local well-posedness and blow-up for an inhomogeneous nonlinear heat equation
    Alessa, Rasha
    Alshehri, Aisha
    Altamimi, Haya
    Majdoub, Mohamed
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (08) : 5264 - 5272
  • [9] WELL-POSEDNESS AND BLOW-UP FOR AN IN-HOMOGENEOUS SEMILINEAR PARABOLIC EQUATION
    Majdoub, Mohamed
    [J]. DIFFERENTIAL EQUATIONS & APPLICATIONS, 2021, 13 (01): : 85 - 100
  • [10] Well-Posedness and Blow-Up for the Fractional Schrodinger-Choquard Equation
    Tao, Lu
    Zhao, Yajuan
    LI, Yongsheng
    [J]. JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2023, 36 (01): : 82 - 101