Well-posedness and blow-up for a non-local elliptic–hyperbolic system related to short-pulse equation

被引:0
|
作者
Lianhong Wang
Fengquan Li
机构
[1] Dalian University of Technology,School of Mathematical Sciences
关键词
Elliptic–hyperbolic system; Short-pulse equation; Well-posedness; Blow-up; Weak solution; 35G25; 35L05; 35L65; 35A01; 35A02;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we investigate the non-local elliptic–hyperbolic system related to a short-pulse equation on the line. We first establish the local well-posedness of the problem in Hr(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^r(\mathbb {R})$$\end{document}, r>32\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r>\frac{3}{2}$$\end{document}, by taking advantage of the Kato’s method. Then, we obtain a blow-up criterion for strong solutions and a result of blow-up solution. Finally, the existence of global weak solutions is proved.
引用
收藏
相关论文
共 50 条