In this paper, we investigate the non-local elliptic–hyperbolic system related to a short-pulse equation on the line. We first establish the local well-posedness of the problem in Hr(R)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$H^r(\mathbb {R})$$\end{document}, r>32\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$r>\frac{3}{2}$$\end{document}, by taking advantage of the Kato’s method. Then, we obtain a blow-up criterion for strong solutions and a result of blow-up solution. Finally, the existence of global weak solutions is proved.
机构:
U Complutense Madrid, Fac CC Quim, Dept Matemat Aplicada, Madrid 28040, SpainU Complutense Madrid, Fac CC Quim, Dept Matemat Aplicada, Madrid 28040, Spain
机构:
Univ Fed Minas Gerais, ICEx, Av Antonio Carlos,6627,Caixa Postal 702, BR-30123970 Belo Horizonte, MG, BrazilUniv Fed Minas Gerais, ICEx, Av Antonio Carlos,6627,Caixa Postal 702, BR-30123970 Belo Horizonte, MG, Brazil
机构:
Sun Yat Sen Univ, Dept Math, Guangzhou 510275, Guangdong, Peoples R ChinaSun Yat Sen Univ, Dept Math, Guangzhou 510275, Guangdong, Peoples R China
Tu, Xi
Yin, Zhaoyang
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Dept Math, Guangzhou 510275, Guangdong, Peoples R China
Macau Univ Sci & Technol, Fac Informat Technol, Macau, Peoples R ChinaSun Yat Sen Univ, Dept Math, Guangzhou 510275, Guangdong, Peoples R China