Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation

被引:561
|
作者
Li, YA [1 ]
Olver, PJ [1 ]
机构
[1] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
基金
美国国家科学基金会;
关键词
D O I
10.1006/jdeq.1999.3683
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish local well-posedness in the Sobolev space H-s with any s > 3/2 for an integrable nonlinearly dispersive wave equation arising as a model for shallow water waves known as the Camassa-Holm equation. However, unlike the more familiar Korteweg-de Vries model, we demonstrate conditions on the initial data that lead to finite time blow-up of certain solutions. (C) 2000 Academic Press.
引用
收藏
页码:27 / 63
页数:37
相关论文
共 50 条
  • [1] Well-posedness, global solutions and blowup phenomena for a nonlinearly dispersive wave equation
    Zhaoyang Yin
    [J]. Journal of Evolution Equations, 2004, 4 : 391 - 419
  • [2] Well-posedness, global solutions and blowup phenomena for a nonlinearly dispersive wave equation
    Yin, ZY
    [J]. JOURNAL OF EVOLUTION EQUATIONS, 2004, 4 (03) : 391 - 419
  • [3] Local well-posedness and blow-up criteria of solutions for a rod equation
    Zhou, Y
    [J]. MATHEMATISCHE NACHRICHTEN, 2005, 278 (14) : 1726 - 1739
  • [4] On the Well-Posedness and Blow-Up for a Semilinear Biparabolic Equation
    Vo Van Au
    Zhou, Yong
    O'Regan, Donal
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2022, 19 (01)
  • [5] On the Well-Posedness and Blow-Up for a Semilinear Biparabolic Equation
    Vo Van Au
    Yong Zhou
    Donal O’Regan
    [J]. Mediterranean Journal of Mathematics, 2022, 19
  • [6] GLOBAL WELL-POSEDNESS AND BLOW-UP FOR THE HARTREE EQUATION
    Yang, Lingyan
    Li, Xiaoguang
    Wu, Yonghong
    Caccetta, Louis
    [J]. ACTA MATHEMATICA SCIENTIA, 2017, 37 (04) : 941 - 948
  • [7] On Well-Posedness and Concentration of Blow-Up Solutions for the Intercritical Inhomogeneous NLS Equation
    Cardoso, Mykael
    Farah, Luiz Gustavo
    Guzman, Carlos M.
    [J]. JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2023, 35 (02) : 1337 - 1367
  • [8] On Well-Posedness and Concentration of Blow-Up Solutions for the Intercritical Inhomogeneous NLS Equation
    Mykael Cardoso
    Luiz Gustavo Farah
    Carlos M. Guzmán
    [J]. Journal of Dynamics and Differential Equations, 2023, 35 : 1337 - 1367
  • [9] Well-Posedness and Blow-Up of Solutions for a Variable Exponent Nonlinear Petrovsky Equation
    Yilmaz, Nebi
    Piskin, Erhan
    Celik, Ercan
    [J]. ADVANCES IN MATHEMATICAL PHYSICS, 2023, 2023
  • [10] Well-posedness, blow-up phenomena, and global solutions for the b-equation
    Escher, Joachim
    Yin, Zhaoyang
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2008, 624 : 51 - 80