A non-local elliptic-hyperbolic system related to the short pulse equation

被引:10
|
作者
Coclite, Giuseppe Maria [1 ]
di Ruvo, Lorenzo [2 ]
机构
[1] Politecn Bari, Dipartimento Meccan Matemat & Management, Via E Orabona 4, I-70125 Bari, Italy
[2] Univ Bari, Dipartimento Matemat, Via E Orabona 4, I-70125 Bari, Italy
关键词
Existence; Uniqueness; Stability; Short pulse equation; Non-local formulation; Cauchy problem; NONHOMOGENEOUS INITIAL-BOUNDARY; OSTROVSKY-HUNTER EQUATION; REGULARIZED SHORT-PULSE; GLOBAL WELL-POSEDNESS; CONSERVATION-LAWS; LASER-PULSES; CONVERGENCE; SCATTERING; DYNAMICS; WELLPOSEDNESS;
D O I
10.1016/j.na.2019.111606
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove the well-posedness of a non-local elliptic-hyperbolic system related to the short pulse equation. It is a model which describes the evolution of the electrical field of linearly polarized continuum spectrum pulses in optical waveguides, including fused-silica telecommunication-type or photonic-crystal fibers, as well as hollow capillaries filled with transparent gases. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:28
相关论文
共 50 条
  • [1] On the initial-boundary value problem for a non-local elliptic-hyperbolic system related to the short pulse equation
    Coclite, Giuseppe Maria
    di Ruvo, Lorenzo
    [J]. PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2022, 3 (06):
  • [2] Well-posedness and blow-up for a non-local elliptic-hyperbolic system related to short-pulse equation
    Wang, Lianhong
    Li, Fengquan
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (05):
  • [3] Well-posedness and blow-up for a non-local elliptic–hyperbolic system related to short-pulse equation
    Lianhong Wang
    Fengquan Li
    [J]. Zeitschrift für angewandte Mathematik und Physik, 2022, 73
  • [4] A Non-Local Regularization of the Short Pulse Equation
    Coclite, Giuseppe Maria
    di Ruvo, Lorenzo
    [J]. MINIMAX THEORY AND ITS APPLICATIONS, 2021, 6 (02): : 295 - 310
  • [5] Source identification problem for an elliptic-hyperbolic equation
    Ashyralyev, Allaberen
    Tetikoglu, Fatma Songul Ozesenli
    Kahraman, Tulay
    [J]. INTERNATIONAL CONFERENCE ON ANALYSIS AND APPLIED MATHEMATICS (ICAAM 2016), 2016, 1759
  • [6] TRICOMI PROBLEM FOR THE ELLIPTIC-HYPERBOLIC EQUATION OF THE SECOND KIND
    Salahitdinov, M. S.
    Mamadaliev, N. K.
    [J]. KOREAN JOURNAL OF MATHEMATICS, 2011, 19 (02): : 111 - 127
  • [7] Nonlocal inverse problem for an equation of elliptic-hyperbolic type
    Sabitov K.B.
    Martem'yanova N.V.
    [J]. Journal of Mathematical Sciences, 2011, 175 (1) : 39 - 50
  • [8] TRICOMI PROBLEM FOR AN ELLIPTIC-HYPERBOLIC EQUATION OF THE SECOND KIND
    Mamadaliev, N. K.
    [J]. EURASIAN MATHEMATICAL JOURNAL, 2014, 5 (03): : 80 - 92
  • [9] A REMARK ON AN ELLIPTIC EQUATION WITH A NON-LOCAL NONLINEARITY
    PERLAMENZALA, G
    [J]. MATEMATICA APLICADA E COMPUTACIONAL, 1983, 2 (01): : 75 - 79
  • [10] AN INTERIOR DISCONTINUITY OF A NONLINEAR ELLIPTIC-HYPERBOLIC SYSTEM
    CHEN, SE
    KELLOGG, RB
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1991, 22 (03) : 602 - 622