Automatic differentiation of Glaucoma visual field from non-glaucoma visual filed using deep convolutional neural network

被引:0
|
作者
Fei Li
Zhe Wang
Guoxiang Qu
Diping Song
Ye Yuan
Yang Xu
Kai Gao
Guangwei Luo
Zegu Xiao
Dennis S. C. Lam
Hua Zhong
Yu Qiao
Xiulan Zhang
机构
[1] Sun Yat-sen University,Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology
[2] Shenzhen Institutes of Advanced Technology,Guangdong key lab of Computer Vision & Virtual Reality, Multimedia Research Center
[3] Chinese Academy of Sciences,Department of Ophthalmology
[4] the First Affiliated Hospital of Kunming Medical University,undefined
[5] SenseTime Group Limited,undefined
[6] C-MER Dennis Lam Eye Hospital,undefined
来源
关键词
Glaucoma; Visual field; Deep learning;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [31] Visual Defect Detection of Metal Screws using a Deep Convolutional Neural Network
    Sauter, Daniel
    Atik, Cem
    Schenk, Christian
    Buettner, Ricardo
    Baumgartl, Hermann
    2021 IEEE 45TH ANNUAL COMPUTERS, SOFTWARE, AND APPLICATIONS CONFERENCE (COMPSAC 2021), 2021, : 303 - 311
  • [32] VISUAL SALIENCE AND PRIORITY ESTIMATION FOR LOCOMOTION USING A DEEP CONVOLUTIONAL NEURAL NETWORK
    Anantrasirichai, N.
    Gilchrist, Iain D.
    Bull, David R.
    2016 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2016, : 1599 - 1603
  • [33] AestheticNet: deep convolutional neural network for person identification from visual aesthetic
    Bari, A. S. M. Hossain
    Sieu, Brandon
    Gavrilova, Marina L.
    VISUAL COMPUTER, 2020, 36 (10-12): : 2395 - 2405
  • [34] Simulated visual field using macular RNFLT in patients with glaucoma
    Takahashi, Mai
    Omodaka, Kazuko
    Himori, Noriko
    Ryu, Morin
    Nakazawa, Toru
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2013, 54 (15)
  • [35] Glaucoma Neuroprotection Trials Are Practical Using Visual Field Outcomes
    Quigley, Harry A.
    OPHTHALMOLOGY GLAUCOMA, 2019, 2 (02): : 69 - 71
  • [36] AestheticNet: deep convolutional neural network for person identification from visual aesthetic
    A. S. M. Hossain Bari
    Brandon Sieu
    Marina L. Gavrilova
    The Visual Computer, 2020, 36 : 2395 - 2405
  • [37] AUTOMATIC PERIMETRY IN GLAUCOMA VISUAL-FIELD SCREENING - CLINICAL-STUDY
    HEIJL, A
    ALBRECHT VON GRAEFES ARCHIV FUR KLINISCHE UND EXPERIMENTELLE OPHTHALMOLOGIE, 1976, 200 (01): : 21 - 37
  • [38] Visual field testing in glaucoma using the Swedish Interactive Thresholding Visual field testing in glaucoma using the Swedish Interactive Thresholding Algorithm (SITA) Algorithm (SITA)
    Tan, Jeremy C. K.
    Yohannan, Jithin
    Ramulu, Pradeep Y.
    Kalloniatis, Michael
    Crabb, David P.
    Crowston, Jonathan
    Phu, Jack
    SURVEY OF OPHTHALMOLOGY, 2025, 70 (01) : 141 - 152
  • [39] Convolutional Neural Network Using RNFL Thickness Maps for Diagnosis of Glaucoma
    Wang, Peiyu
    Moloney, Maemae
    Torres, Mina
    Jiang, Xuejuan
    Rodger, Damien C.
    Varma, Rohit
    Richter, Grace
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2018, 59 (09)
  • [40] Insights into Fundus Images to Identify Glaucoma Using Convolutional Neural Network
    Pawar, Digvijay J.
    Kanse, Yuvraj K.
    Patil, Suhas S.
    THIRD INTERNATIONAL CONFERENCE ON IMAGE PROCESSING AND CAPSULE NETWORKS (ICIPCN 2022), 2022, 514 : 654 - 663