Insights into Fundus Images to Identify Glaucoma Using Convolutional Neural Network

被引:0
|
作者
Pawar, Digvijay J. [1 ]
Kanse, Yuvraj K. [2 ]
Patil, Suhas S. [2 ]
机构
[1] Shivaji Univ, Elect Engn, Kolhapur, MS, India
[2] KBP Coll Engn, Dept Elect & Telecommun Engn, Satara, MS, India
关键词
Early detection; Glaucoma; Convolutional neural network; Fully connected layer; Softmax classifier;
D O I
10.1007/978-3-031-12413-6_51
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
Glaucoma, an eye disease, is a multi-factorial neuro-degenerative disease that vitiates vision over time and which may cause permanent vision impairment. In recent years, machine learning has been used with the idea of using algorithms to find patterns and/or mark extrapolations based on a collection of data. The detection of glaucoma has been achieved with various deep learning (DL) models so far. This paper presents the Convolutional Neural Network (CNN) approach for the diagnosis of glaucoma with remarkable performance. In this approach, glaucoma and healthy images can the differentiated because it forms patterns that can be detected with the CNN. The fundus images are used as image modality which includes publically available retinal image datasets as IEEE DataPort, Drishti-GS and Kaggle Dataset. The analysis is performed for selected datasets, it is observed that, the IEEE DataPort dataset gives better results than others and obtained values of accuracy, sensitivity and specificity are 95.63%, 100% and 91.25% respectively.
引用
收藏
页码:654 / 663
页数:10
相关论文
共 50 条
  • [1] Automatic Glaucoma Diagnosis in Digital Fundus images using Convolutional Neural Network
    Sharma, Ambika
    Aggarwal, Monika
    Roy, Sumantra Dutta
    Gupta, Vivek
    [J]. PROCEEDINGS OF 2019 5TH IEEE INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, COMPUTING AND CONTROL (ISPCC 2K19), 2019, : 160 - 165
  • [2] Convolutional Neural Network for Glaucoma detection using Compass color fundus images
    Rui, Chiara
    Gazzina, Silvia
    Montesano, Giovanni
    Crabb, David P.
    Garway-Heath, David F.
    Oddone, Francesco
    Lanzetta, Paolo
    Brusini, Paolo
    Johnson, Chris A.
    Fogagnolo, Paolo
    Rossetti, Luca M.
    [J]. INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2022, 63 (07)
  • [3] Glaucoma assessment from color fundus images using convolutional neural network
    Elangovan, Poonguzhali
    Nath, Malaya Kumar
    [J]. INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2021, 31 (02) : 955 - 971
  • [4] Hybrid convolutional neural network optimized with an artificial algae algorithm for glaucoma screening using fundus images
    Eswari, M. Shanmuga
    Balamurali, S.
    Ramasamy, Lakshmana Kumar
    [J]. JOURNAL OF INTERNATIONAL MEDICAL RESEARCH, 2024, 52 (09)
  • [5] ECNet: An evolutionary convolutional network for automated glaucoma detection using fundus images
    Nayak, Deepak Ranjan
    Das, Dibyasundar
    Majhi, Banshidhar
    Bhandary, Sulatha, V
    Acharya, U. Rajendra
    [J]. BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2021, 67
  • [6] Retinal Vessel Segmentation In Fundus Images Using Convolutional Neural Network
    Chen, Chunhui
    Chuah, Joon Huang
    Ali, Raza
    [J]. 2021 INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE BIG DATA AND INTELLIGENT SYSTEMS (HPBD&IS), 2021, : 261 - 265
  • [7] Convolutional Neural Network Application for Analysis of Fundus Images
    Ilyasova, Nataly Yu
    Shirokanev, Aleksandr S.
    Klimov, Ilya
    Paringer, Rustam A.
    [J]. PROCEEDINGS OF THE FOURTH INTERNATIONAL SCIENTIFIC CONFERENCE INTELLIGENT INFORMATION TECHNOLOGIES FOR INDUSTRY (IITI'19), 2020, 1156 : 60 - 67
  • [8] MicroNet: microaneurysm detection in retinal fundus images using convolutional neural network
    Murugan, R.
    Roy, Parthapratim
    [J]. SOFT COMPUTING, 2022, 26 (03) : 1057 - 1066
  • [9] MicroNet: microaneurysm detection in retinal fundus images using convolutional neural network
    R Murugan
    Parthapratim Roy
    [J]. Soft Computing, 2022, 26 : 1057 - 1066
  • [10] Deep convolution neural network for accurate diagnosis of glaucoma using digital fundus images
    Raghavendra, U.
    Fujita, Hamido
    Bhandary, Sulatha V.
    Gudigar, Anjan
    Tan, Jen Hong
    Acharya, U. Rajendra
    [J]. INFORMATION SCIENCES, 2018, 441 : 41 - 49