Automatic differentiation of Glaucoma visual field from non-glaucoma visual filed using deep convolutional neural network

被引:0
|
作者
Fei Li
Zhe Wang
Guoxiang Qu
Diping Song
Ye Yuan
Yang Xu
Kai Gao
Guangwei Luo
Zegu Xiao
Dennis S. C. Lam
Hua Zhong
Yu Qiao
Xiulan Zhang
机构
[1] Sun Yat-sen University,Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology
[2] Shenzhen Institutes of Advanced Technology,Guangdong key lab of Computer Vision & Virtual Reality, Multimedia Research Center
[3] Chinese Academy of Sciences,Department of Ophthalmology
[4] the First Affiliated Hospital of Kunming Medical University,undefined
[5] SenseTime Group Limited,undefined
[6] C-MER Dennis Lam Eye Hospital,undefined
来源
关键词
Glaucoma; Visual field; Deep learning;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [41] Automatic Glaucoma Detection from Fundus Images Using Deep Convolutional Neural Networks and Exploring Networks Behaviour Using Visualization Techniques
    Velpula V.K.
    Sharma L.D.
    SN Computer Science, 4 (5)
  • [42] 3-LbNets: Tri-Labeling Deep Convolutional Neural Network for the Automated Screening of Glaucoma, Glaucoma Suspect, and No Glaucoma in Fundus Images
    Puangarom, S.
    Twinvitoo, A.
    Sangchocanonta, S.
    Munthuli, A.
    Phienphanich, P.
    Itthipanichpong, R.
    Ratanawongphaibul, K.
    Chansangpetch, S.
    Manassakorn, A.
    Tantisevi, V.
    Rojanapongpun, P.
    Tantibundhit, C.
    2023 45TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY, EMBC, 2023,
  • [43] Convolutional neural network and texture descriptor-based automatic detection and diagnosis of glaucoma
    dos Santos Ferreira, Marcos Vinicius
    de Carvalho Filho, Antonio Oseas
    de Sousa, Alcilene Dalilia
    Silva, Aristofanes Correa
    Gattass, Marcelo
    EXPERT SYSTEMS WITH APPLICATIONS, 2018, 110 : 250 - 263
  • [44] Comparison of intra-eye and inter-eye visual field asymmetry score in non-glaucoma subjects with early stage of Primary Open Angle Glaucoma (POAG) patients.
    Ghazali, Naqibah
    Henson, David Barry
    Aslam, Tariq
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2014, 55 (13)
  • [45] Visual Emotion sensing using Convolutional Neural Network
    Ayadi, Souha
    Lachiri, Zied
    PRZEGLAD ELEKTROTECHNICZNY, 2022, 98 (03): : 89 - 92
  • [46] Glaucoma disease detection using stacked attention U-Net and deep convolutional neural network
    Murugesan, Malathi
    Laseetha, T. S. Jeyali
    Sundaram, Senthilkumar
    Kandasamy, Hariprasath
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 45 (01) : 1603 - 1616
  • [47] Parapapillary Deep-Layer Microvasculature Dropout and Visual Field Progression in Glaucoma
    Kwon, Ji Min
    Weinreb, Robert N.
    Zangwill, Linda M.
    Suh, Min Hee
    AMERICAN JOURNAL OF OPHTHALMOLOGY, 2019, 200 : 65 - 75
  • [48] Multimodal Deep Learning Model of Predicting Future Visual Field for Glaucoma Patients
    Pham, Quang T. M.
    Han, Jong Chul
    Park, Do Young
    Shin, Jitae
    IEEE ACCESS, 2023, 11 : 19049 - 19058
  • [49] Improving the detection of visual field progression in glaucoma using fused data from visual field testing and optical coherence tomography
    Li, Yan
    Eizenman, Moshe
    Shi, Runjie Bill
    Buys, Yvonne M.
    Trope, Graham E.
    Wong, Willy
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2024, 65 (07)
  • [50] Monitoring ′healthy′ areas of the visual field in glaucoma patients with deep perimetric defects
    Corallo, G
    PERIMETRY UPDATE 2000/2001, 2001, : 333 - 336