Relative importance of parameters affecting wind speed prediction using artificial neural networks

被引:0
|
作者
M. A. Ghorbani
R. Khatibi
B. Hosseini
M. Bilgili
机构
[1] Tabriz University,Department of Water Engineering
[2] Cukurova University,Department of Mechanical Engineering
来源
关键词
Wind Speed; Root Mean Square Error; Artificial Neural Network; Artificial Neural Network Model; Wind Farm;
D O I
暂无
中图分类号
学科分类号
摘要
In traditional artificial neural networks (ANN) models, the relative importance of the individual meteorological input variables is often overlooked. A case study is presented in this paper to model monthly wind speed values using meteorological data (air pressure, air temperature, relative humidity, and precipitation), where the study also includes an estimate of the relative importance of these variables. Recorded monthly mean data are available at a gauging site in Tabriz, Azerbaijan, Iran, for the period from 2000 to 2005, gauged in the city at the outskirt of alluvial funneling mountains with an established microclimatic conditions and a diurnal wind regime. This provides a sufficiently severe test for the ANN model with a good predictive capability of 1 year of lead time but without any direct approach to refer the predicted results to local microclimatic conditions. A method is used in this paper to calculate the relative importance of each meteorological input parameters affecting wind speed, showing that air pressure and precipitation are the most and least influential parameters with approximate values of 40 and 10 %, respectively. This gained knowledge corresponds to the local knowledge of the microclimatic and geomorphologic conditions surrounding Tabriz.
引用
收藏
页码:107 / 114
页数:7
相关论文
共 50 条
  • [31] Wind speed prediction based on simple meteorological data using artificial neural network
    Ghanbarzadeh, A.
    Noghrehabadi, A. R.
    Behrang, M. A.
    Assareh, E.
    [J]. 2009 7TH IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS, VOLS 1 AND 2, 2009, : 664 - +
  • [32] Wind Speed Prediction from Site Meteorological Data Using Artificial Neural Network
    Ahmed, Khawaja Masood
    Khan, Muhammad Arshad
    Siddiqui, Imran
    Khan, Siraj
    Shoaib, M.
    Zia, Ibrahim
    [J]. 2022 GLOBAL CONFERENCE ON WIRELESS AND OPTICAL TECHNOLOGIES (GCWOT), 2022, : 99 - 106
  • [33] On comparing three artificial neural networks for wind speed forecasting
    Li, Gong
    Shi, Jing
    [J]. APPLIED ENERGY, 2010, 87 (07) : 2313 - 2320
  • [34] Wind speed forecasting using neural networks
    Blanchard, Tyler
    Samanta, Biswanath
    [J]. WIND ENGINEERING, 2020, 44 (01) : 33 - 48
  • [35] Assessment of optimum tip speed ratio in wind turbines using artificial neural networks
    Yurdusev, M. A.
    Ata, R.
    Cetin, N. S.
    [J]. ENERGY, 2006, 31 (12) : 2153 - 2161
  • [36] Efficient wind speed forecasting using discrete wavelet transform and artificial neural networks
    Berrezzek F.
    Khelil K.
    Bouadjila T.
    [J]. Revue d'Intelligence Artificielle, 2019, 33 (06) : 447 - 452
  • [37] Modelling of wind speed using artificial neural networks for university campus of Burdur (Turkey)
    Kerem A.
    Kizilkan Ö.
    Salman S.
    [J]. Kerem, Alper (alperkerem@osmaniye.edu.tr), 1600, Springer Verlag (PartF2): : 209 - 222
  • [38] Prediction of Earth orientation parameters by artificial neural networks
    H. Schuh
    M. Ulrich
    D. Egger
    J. Müller
    W. Schwegmann
    [J]. Journal of Geodesy, 2002, 76 : 247 - 258
  • [39] Prediction of Earth orientation parameters by artificial neural networks
    Schuh, H
    Ulrich, M
    Egger, D
    Müller, J
    Schwegmann, W
    [J]. JOURNAL OF GEODESY, 2002, 76 (05) : 247 - 258
  • [40] Prediction of fracture parameters of concrete by Artificial Neural Networks
    Ince, R
    [J]. ENGINEERING FRACTURE MECHANICS, 2004, 71 (15) : 2143 - 2159