Prediction of Earth orientation parameters by artificial neural networks

被引:1
|
作者
H. Schuh
M. Ulrich
D. Egger
J. Müller
W. Schwegmann
机构
[1] Institut für Geodäsie und Geophysik,
[2] Technische Universität Wien,undefined
[3] Gusshausstrasse 27–29,undefined
[4] 1040 Wien,undefined
[5] Austria e-mail: hschuh@luna.tuwien.ac.at; Tel.: +43-1-58801-12860; Fax: +43-1-58801-12896,undefined
[6] Lehrstuhl für Photogrammetrie und Fernerkundung,undefined
[7] Technische Universität München,undefined
[8] Arcisstrasse 21,undefined
[9] 80290 München,undefined
[10] Germany e-mail: markus.ulrich@bv.tum.de; Tel.: +49-89-289-22643; Fax: +49-89-280-9573,undefined
[11] Forschungseinrichtung Satellitengeodäsie,undefined
[12] Technische Universität München,undefined
[13] Arcisstrasse 21,undefined
[14] 80333 München,undefined
[15] Germany e-mail: dieter.egger@bv.tum.de; Tel.: +49-89-289-23183; Fax: +49-89-289-23178,undefined
[16] Institut für Astronomische und Physikalische Geodäsie,undefined
[17] Technische Universität München,undefined
[18] Arcisstrasse 21,undefined
[19] 80333 München,undefined
[20] Germany. Now at: Universität Hannover,undefined
[21] Institut für Erdmessung,undefined
[22] Schneiderberg 50,undefined
[23] 30167 Hannover,undefined
[24] Germany e-mail: mueller@ife.uni-hannover.de; Tel.: +49 (0)511/762-3362; Fax: +49 (0)511/762-4068; http://www.ife.uni-hannover.de,undefined
[25] CNR Istituto Di Radioastronomia,undefined
[26] Via P. Gobetti,undefined
[27] 101,undefined
[28] 40129 Bologna,undefined
[29] Italy e-mail: schwegma@ira.bo.cnr.it; Tel.: +39-051-6399383; Fax: +39-051-6399431,undefined
来源
Journal of Geodesy | 2002年 / 76卷
关键词
Keywords: Earth Rotation – Prediction – Neural Networks;
D O I
暂无
中图分类号
学科分类号
摘要
 Earth orientation parameters (EOPs) [polar motion and length of day (LOD), or UT1–UTC] were predicted by artificial neural networks. EOP series from various sources, e.g. the C04 series from the International Earth Rotation Service and the re-analysis optical astrometry series based on the HIPPARCOS frame, served for training the neural network for both short-term and long-term predictions. At first, all effects which can be described by functional models, e.g. effects of the solid Earth tides and the ocean tides or seasonal atmospheric variations of the EOPs, were removed. Only the differences between the modeled and the observed EOPs, i.e. the quasi-periodic and irregular variations, were used for training and prediction. The Stuttgart neural network simulator, which is a very powerful software tool developed at the University of Stuttgart, was applied to construct and to validate different types of neural networks in order to find the optimal topology of the net, the most economical learning algorithm and the best procedure to feed the net with data patterns. The results of the prediction were analyzed and compared with those obtained by other methods. The accuracy of the prediction is equal to or even better than that by other prediction methods.
引用
收藏
页码:247 / 258
页数:11
相关论文
共 50 条
  • [1] Prediction of Earth orientation parameters by artificial neural networks
    Schuh, H
    Ulrich, M
    Egger, D
    Müller, J
    Schwegmann, W
    [J]. JOURNAL OF GEODESY, 2002, 76 (05) : 247 - 258
  • [2] Long-term prediction of the Earth Orientation Parameters by the artificial neural network technique
    Liao, D. C.
    Wang, Q. J.
    Zhou, Y. H.
    Liao, X. H.
    Huang, C. L.
    [J]. JOURNAL OF GEODYNAMICS, 2012, 62 : 87 - 92
  • [3] Prediction of fracture parameters of concrete by Artificial Neural Networks
    Ince, R
    [J]. ENGINEERING FRACTURE MECHANICS, 2004, 71 (15) : 2143 - 2159
  • [4] Prediction of CEC using fractal parameters by artificial neural networks
    Bayat, Hossein
    Davatgar, Naser
    Jalali, Mohsen
    [J]. INTERNATIONAL AGROPHYSICS, 2014, 28 (02) : 143 - 152
  • [5] Prediction of Strawberries' Quality Parameters Using Artificial Neural Networks
    Amoriello, Tiziana
    Ciccoritti, Roberto
    Ferrante, Patrizia
    [J]. AGRONOMY-BASEL, 2022, 12 (04):
  • [6] The use of artificial neural networks for the prediction of water quality parameters
    Maier, HR
    Dandy, GC
    [J]. WATER RESOURCES RESEARCH, 1996, 32 (04) : 1013 - 1022
  • [7] WEIGHTS FOR PREDICTION OF EARTH ORIENTATION PARAMETERS
    SEKIGUCHI, N
    [J]. IAU SYMPOSIA, 1988, (128): : 281 - 283
  • [8] Prediction of street tree morphological parameters using artificial neural networks
    Jutras, Pierre
    Prasher, Shiv O.
    Mehuys, Guy R.
    [J]. COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2009, 67 (1-2) : 9 - 17
  • [9] The use of artificial neural networks for the prediction of water quality parameters - Reply
    Maier, H
    Dandy, G
    [J]. WATER RESOURCES RESEARCH, 1997, 33 (10) : 2425 - 2427
  • [10] Prediction of water quality parameters in a reservoir using artificial neural networks
    Vicente, H.
    Couto, C.
    Machado, J.
    Abelha, A.
    Neves, J.
    [J]. International Journal of Design and Nature and Ecodynamics, 2012, 7 (03): : 310 - 319