Prediction of fracture parameters of concrete by Artificial Neural Networks

被引:141
|
作者
Ince, R [1 ]
机构
[1] Firat Univ, Fac Engn, Dept Civil Engn, Elazig, Turkey
关键词
concrete; fracture mechanics; two-parameter model; artificial intelligence; artificial neural networks;
D O I
10.1016/j.engfracmech.2003.12.004
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Modelling of material behaviour generally involves the development of a mathematical model derived from observations and experimental data. An alternative way discussed in this paper is Artificial Neural Network (ANN)-based modelling which is a subfield of artificial intelligence. The main benefit in using an ANN approach is that the network is built directly from experimental data using the self-organising capabilities of the ANN. In this paper the Two-Parameter Model (TPM) in the fracture of cementitious materials is modelled with a back-propagation ANN. The results of an ANN-based TPM look viable and very promising. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2143 / 2159
页数:17
相关论文
共 50 条
  • [1] Prediction of fracture parameters of concrete using an artificial neural network approach
    Xu, Shilang
    Wang, Qingmin
    Lyu, Yao
    Li, Qinghua
    Reinhardt, Hans W.
    [J]. ENGINEERING FRACTURE MECHANICS, 2021, 258
  • [2] Application of artificial neural networks for prediction of concrete properties
    Abdulla, N.
    [J]. MAGAZINE OF CIVIL ENGINEERING, 2022, 110 (02):
  • [3] Prediction of concrete strength using artificial neural networks
    Lee, SC
    [J]. ENGINEERING STRUCTURES, 2003, 25 (07) : 849 - 857
  • [4] PREDICTION OF FRACTURE TOUGHNESS TRANSITION FROM TENSILE TEST PARAMETERS APPLYING ARTIFICIAL NEURAL NETWORKS
    Dlouhy, I.
    Hadraba, H.
    Chlup, Z.
    Kozak, V.
    Smida, T.
    [J]. NEW METHODS OF DAMAGE AND FAILURE ANALYSIS OF STRUCTURAL PARTS, 2010, 2010, : 207 - 215
  • [5] Prediction of Earth orientation parameters by artificial neural networks
    H. Schuh
    M. Ulrich
    D. Egger
    J. Müller
    W. Schwegmann
    [J]. Journal of Geodesy, 2002, 76 : 247 - 258
  • [6] Prediction of Earth orientation parameters by artificial neural networks
    Schuh, H
    Ulrich, M
    Egger, D
    Müller, J
    Schwegmann, W
    [J]. JOURNAL OF GEODESY, 2002, 76 (05) : 247 - 258
  • [7] Utilising artificial neural networks for prediction of properties of geopolymer concrete
    Shamayleh, Omar A.
    Far, Harry
    [J]. COMPUTERS AND CONCRETE, 2023, 31 (04): : 327 - 335
  • [8] Prediction of the Dynamic Properties of Concrete Using Artificial Neural Networks
    Yasin, Amjad A.
    [J]. CIVIL ENGINEERING JOURNAL-TEHRAN, 2024, 10 (01): : 249 - 264
  • [9] Prediction of radiation shielding properties for concrete by artificial neural networks
    Meltem Y. Imamoglu
    Iskender Akkurt
    Seher Arslankaya
    Roya Boodaghi Malidarre
    Isık Yesim Dicle Erdamar
    [J]. The European Physical Journal Plus, 137
  • [10] Fire resistance of concrete: prediction using artificial neural networks
    Chan, YN
    Jin, P
    Anson, M
    Wang, JS
    [J]. MAGAZINE OF CONCRETE RESEARCH, 1998, 50 (04) : 353 - 358